Food‐web structure varies along environmental gradients in a high‐latitude marine ecosystem

Ecography - Tập 42 Số 2 - Trang 295-308 - 2019
Susanne Kortsch1,2, Raul Primicerio3,2, Michaela Aschan2, Sigrid Lind4, Andrey V. Dolgov1, Benjamin Planque4
1Knipovich Polar Research Inst. of Marine Fisheries and Oceanography, Murmansk, Russia
2Norwegian College of Fishery Science UiT, The Arctic Univ. of Norway Tromsø Norway
3Environmental and Marine Biology, Faculty of Science and Engineering Åbo Akademi Univ. Turku Finland
4Inst. of Marine Research Langnes, Tromsø Norway

Tóm tắt

Large‐scale patterns in species diversity and community composition are associated with environmental gradients, but the implications of these patterns for food‐web structure are still unclear. Here, we investigated how spatial patterns in food‐web structure are associated with environmental gradients in the Barents Sea, a highly productive shelf sea of the Arctic Ocean. We compared food webs from 25 subregions in the Barents Sea and examined spatial correlations among food‐web metrics, and between metrics and spatial variability in seawater temperature, bottom depth and number of days with ice cover. Several food‐web metrics were positively associated with seawater temperature: connectance, level of omnivory, clustering, cannibalism, and high variability in generalism, while other food‐web metrics such as modularity and vulnerability were positively associated with sea ice and negatively with temperature. Food‐web metrics positively associated with habitat heterogeneity were: number of species, link density, omnivory, path length, and trophic level. This finding suggests that habitat heterogeneity promotes food‐web complexity in terms of number of species and link density. Our analyses reveal that spatial variation in food‐web structure along the environmental gradients is partly related to species turnover. However, the higher interaction turnover compared to species turnover along these gradients indicates a consistent modification of food‐web structure, implying that interacting species may co‐vary in space. In conclusion, our study shows how environmental heterogeneity, via environmental filtering, influences not only turnover in species composition, but also the structure of food webs over large spatial scales.

Từ khóa


Tài liệu tham khảo

10.1111/j.0030-1299.2007.15768.x

10.1371/journal.pone.0062748

10.1111/j.1466-8238.2011.00705.x

10.1073/pnas.0501562102

10.1111/j.1600-0587.2012.07852.x

10.1016/j.fooweb.2014.11.002

10.1111/ele.12434

10.1111/ele.12481

10.1175/BAMS-D-13-00177.1

10.1093/icesjms/fsv040

10.1098/rspb.2015.1589

10.1086/303315

Csardi G., 2006, The igraph software package for complex network research, InterJournal Complex Syst, 1695, 1

10.1006/jmsc.2000.0712

10.1371/journal.pone.0095273

10.3354/meps11662

Dolgov A. V., 2014, Feeding of non‐target fish in the northern Barents Sea, The formation of bioproductivity in the northern Barents Sea as response to warming in the Arctic., 155

Dolgov A. V. et al., 2014, Feeding peculiarities of non‐target fish and their role in productivity of the Kara Sea ecosystem, VNIRO Proc, 152, 190

10.1038/nature23886

10.1007/978-0-387-30440-3_216

10.1073/pnas.192407699

10.3354/meps273291

10.1111/ele.12081

10.1093/icesjms/fsw022

10.1038/nclimate2647

10.1073/pnas.1706080114

10.1111/j.1365-2427.2012.02744.x

10.1126/science.1113075

10.1038/ncomms10737

10.1126/science.1061967

Gislason H., 2000, Ecosystem effects of fishing, ICES J. Mar. Sci., 57, 446

Hansen C., 2016, Set‐up of the Nordic and Barents Sea (NoBa) Atlantis model

10.1111/ecog.01937

10.1080/17451000.2013.775458

10.1016/S0278-4343(01)00070-X

10.1046/j.1461-0248.2003.00529.x

10.1371/journal.pone.0034924

10.1007/s00300-016-1946-6

10.1093/icesjms/fsu106

10.4319/lo.1996.41.8.1833

10.1111/ecog.00819

10.1098/rspb.2015.1546

Kortsch S., 2018, Data from: Food‐web structure varies along environmental gradients in a high‐latitude marine ecosystem, – Dryad Digital Repository,

Legendre P., 1998, Numerical ecology, 2nd ed.

10.1016/j.dsr.2011.12.007

10.1002/2016GL068421

10.1111/j.1751-8369.1991.tb00630.x

10.1016/j.dsr2.2007.08.013

10.1073/pnas.0408424102

10.2307/1932254

10.1016/j.dsr2.2016.07.010

Maslanik J., 1999, Updated daily. Near‐real‐time DMSP SSM/I‐SSMIS daily polar gridded sea‐ice concentrations, 2008–2009., 4

May R. M., 1973, Stability and complexity in model ecosystems

10.1098/rspb.1997.0172

Mecklenburg C. W. et al., 2018, Marine fishes of the Arctic region, vol. 1.

Meier W., 2006, Updated quarterly. Sea‐ice concentrations from Nimbus‐7 SMMR and DMSP SSM/I passive microwave data, 1978–2007.

Michalsen K., 2011, The joint Norwegian–Russian ecosystem survey: overview and lessons learned, Proceedings of the 15th Russian–Norwegian Symposium ‘Climate change and effects on the Barents Sea marine living resources’, 247

10.1006/jtbi.2001.2460

10.1111/ecog.01078

10.1038/nature06154

10.1103/PhysRevE.69.026113

10.1371/journal.pbio.1000178

Oksanen J., 2007, Vegan: community ecology package

10.1080/17451000.2013.775453

10.1126/science.aai9214

Pellissier L., 2017, Comparing species interaction networks along environmental gradients, Biol. Rev.

10.1093/icesjms/fsv155

Planque B., 2010, How does fishing alter marine populations and ecosystems sensitivity to climate?, ICES J. Mar. Sci., 79, 403

10.1890/13-1062.1

10.1111/ele.12002

10.1111/oik.01719

Polis G. A., 1989, The ecology and evolution of intraguild predation: potential competitors that eat each other, Annu. Rev. Ecol. Evol. Syst., 138, 297, 10.1146/annurev.es.20.110189.001501

10.1016/j.pocean.2011.02.005

10.1016/B978-0-12-381363-3.00003-4

10.1111/j.2005.0906-7590.04181.x

10.1111/j.1466-8238.2010.00579.x

10.1073/pnas.0901637106

10.1073/pnas.1014353108

10.1038/ncomms5114

10.1093/bioinformatics/btl117

10.1046/j.0305-0270.2003.00994.x

10.1111/j.0030-1299.2005.11600.x

10.1890/05-1454

10.2307/2265614

10.1038/nature09329

10.1098/rspb.2014.2925

10.1146/annurev-ecolsys-110316-022821

10.1890/07-0978.1

Ward J. H., 1963, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 58, 263

10.2307/1943563

10.1002/ece3.1203

10.1002/ece3.1640

10.1111/fwb.12908

10.1890/0012-9658(2003)084[0162:MAOCSI]2.0.CO;2

10.1890/12-0729.1