Food in space from hydrogen-oxidizing bacteria

Acta Astronautica - Tập 180 - Trang 260-265 - 2021
Kyle A. Alvarado1,2, Juan B. García Martínez1, Silvio Matassa3, Joseph Egbejimba1,2, David Denkenberger1,2
1Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK, USA
2University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
3Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy

Tài liệu tham khảo

Schlegel, 1965, Growth of ‘knallgas’ bacteria (hydrogenomonas) using direct electrolysis of the culture medium, Nature, 205, 308, 10.1038/205308b0 Mateles, 1967, Growth of a thermophilic bacterium on hydrocarbons: a new source of single-cell protein, Science, 157, 1322, 10.1126/science.157.3794.1322 Sefton, 2019 Monbiot, 2020 Jones, 2020, Recent advances in single cell protein use as a feed ingredient in aquaculture, Curr. Opin. Biotechnol., 61, 189, 10.1016/j.copbio.2019.12.026 Volova, 2010, Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms, Appl. Biochem. Microbiol., 46, 574, 10.1134/S0003683810060037 A. Ritala, S.T. Häkkinen, M. Toivari, M.G. Wiebe, Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016, Front. Microbiol.. 8 (2017). https://doi.org/10.3389/fmicb.2017.02009. Dietz, 2011, High impact, low probability? An empirical analysis of risk in the economics of climate change, Climatic Change, 108, 519, 10.1007/s10584-010-9993-4 Smith, 2019, Finnish company uses NASA’s concept to create food from thin air, Nature World News, para. 3 SolarFoods Denkenberger, 2014 García Martínez, 2021, Potential of microbial protein from hydrogen for preventing mass starvation in catastrophic scenarios, Sustain. Prod. Consump., 25, 234, 10.1016/j.spc.2020.08.011 Baum, 2015, Isolated refuges for surviving global catastrophes, Futures, 72, 45, 10.1016/j.futures.2015.03.009 Turchin, 2017, Aquatic refuges for surviving a global catastrophe, Futures, 89, 26, 10.1016/j.futures.2017.03.010 Alvarado, 2019, Scaling of greenhouse crop production in low sunlight scenarios, Sci. Total Environ., 136012 Denkenberger, 2018, Micronutrient availability in alternative foods during agricultural catastrophes, Agriculture, 8, 169, 10.3390/agriculture8110169 Ai, 2008, Development of a ground-based space micro-algae photo-bioreactor, Adv. Space Res., 41, 742, 10.1016/j.asr.2007.06.060 Levri, 2003, Advanced life support equivalent system mass guidelines document, Natl. Aeronaut. Space Admin., 47 Ehrenhaft 2004 Ansdell, 2011, Stepping stones toward global space exploration, Acta Astronaut., 68, 2098, 10.1016/j.actaastro.2010.10.025 Anderson, 2015, Life support baseline values and Assumptions document, Life Supp., 220 Boeing Casaburri Clark, 1996, The power of protein, Physician Sportsmed., 24, 11, 10.1080/00913847.1996.11947934 Robb-Nicholson, 2019, By the way, doctor: is spirulina good for you?, Harvard Health, para. 3 Płaczek, 2017, Technical evaluation of photobioreactors for microalgae cultivation Huang, 2017, Design of photobioreactors for mass cultivation of photosynthetic organisms, Engineering, 3, 318, 10.1016/J.ENG.2017.03.020 Roy, 2011 Ramos, 2012, Effect of the initial total solids concentration and initial pH on the bio-hydrogen production from cafeteria food waste, Int. J. Hydrogen Energy, 37, 13288, 10.1016/j.ijhydene.2012.06.051 Pikaar, 2018, Decoupling livestock from land use through industrial feed production pathways, Environ. Sci. Technol., 52, 7351, 10.1021/acs.est.8b00216 Gellett, 2012 Council, 2015 Szepessy, 2018, Low energy consumption of high-speed centrifuges, Chem. Eng. Technol., 41, 2375, 10.1002/ceat.201800292 Gayen, 2019 Baker, 2005, Energy consumption of industrial spray dryers, Dry. Technol., 23, 365, 10.1081/DRT-200047665 Unibio Wijffels, 2010, An outlook on microalgal biofuels, Sci, 329, 796, 10.1126/science.1189003 Haverkort, 2007, Potato crop response to radiation and daylength, 353 Darko, 2014, Photosynthesis under artificial light: the shift in primary and secondary metabolism, Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, 10.1098/rstb.2013.0243 Blakey, 2018 Wright, 2017, Cree royal blue LED delivers 81% wall plug efficiency (UPDATED), LEDs Magaz., para. 1 Godia, 2002, MELISSA: a loop of interconnected bioreactors to develop life support in space, J. Biotechnol., 99, 319, 10.1016/S0168-1656(02)00222-5 Vernerey, 2001, Scale-up and design of a pilot-plant photobioreactor for the continuous culture of Spirulina platensis, Biotechnol. Prog., 17, 431, 10.1021/bp010010j Urrutia, 2019 Hille, 2015 Qiu, 2015, Porosity, bulk density, and volume reduction during drying: review of measurement methods and coefficient determinations, Dry. Technol., 33, 10.1080/07373937.2015.1036289 Ishizaki, 1990, Batch culture of Alcaligenes eutrophus ATCC 17697T using recycled gas closed circuit culture system, J. Ferment. Bioeng., 69, 170, 10.1016/0922-338X(90)90041-T Junaedi, 2011, Compact and lightweight sabatier reactor for carbon dioxide reduction Valdes, 2011, Built for stability, Nat. Geosci., 4, 414, 10.1038/ngeo1200 Bailey, 2015 Dudley, 2002, Bioweapons, biodiversity, and ecocide: potential effects of biological weapons on biological diversity, Bioscience, 52, 583, 10.1641/0006-3568(2002)052[0583:BBAEPE]2.0.CO;2 Mann, 1999, Genetic engineers aim to soup up crop photosynthesis, Sci, 283, 314, 10.1126/science.283.5400.314 Saigo, 1999, Agricultural biotechnology and the negotiation of the biosafety protocol, Geo. Int’l Envtl. L. Rev., 12, 779 Church, 2009, Safeguarding Biol. Seed, 20, 84 Denkenberger, 2019, Food without sun: price and life-saving potential, Foresight, 21, 118, 10.1108/FS-04-2018-0041 Baum, 2015, Resilience to global food supply catastrophes, Environ. Syst. Dec., 1 Denkenberger, 2015, Feeding everyone: solving the food crisis in event of global catastrophes that kill crops or obscure the sun, Futures, 72, 57, 10.1016/j.futures.2014.11.008