Folic acid mediated solid lipid nanocarriers loaded with docetaxel and oxidized single-walled carbon nanotubes

Springer Science and Business Media LLC - Tập 16 - Trang 1-10 - 2013
Xiali Zhu1,2, Shengnan Huang1, Yingxia Xie1, Huijuan Zhang1, Lin Hou1, Yingjie Zhang1, Heqing Huang1, Jinjin Shi1, Lei Wang1, Zhenzhong Zhang1
1School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
2Pharmacy College, Henan University of TCM, Zhengzhou, People’s Republic of China

Tóm tắt

Single-walled carbon nanotubes (SWNT) possess high-near-infrared absorption coefficient, large surface area, and have great potential in drug delivery. In this study, we obtained ultrashort oxidized SWNT (OSWNT) using mixed acid oxidation method. Then, docetaxel (DTX) and folic acid (FA) are conjugated with OSWNT via π–π accumulation and amide linkage, respectively. A targeting and photothermal sensitive drug delivery system FA–DTX–OSWNT–SLN was prepared following a microemulsion technique. The size and zeta potential of FA–DTX–OSWNT–SLN were 182.8 ± 2.8 nm and −34.59 ± 1.50 mV, respectively. TEM images indicated that FA–DTX–OSWNT–SLN was spherical and much darker than general solid lipid nanoparticles (SLN). Furthermore, OSWNT may wind round, insert into or be encapsulated into the nanocarriers. Compared with free DTX, FA–DTX–OSWNT–SLN could efficiently cross cell membranes and afford higher antitumor efficacy in MCF-7 cells in vitro. Meanwhile, the combination of near-infrared laser (NIR) irradiation at 808 nm significantly enhanced cell inhibition. In conclusion, FA–DTX–OSWNT–SLN drug delivery system in combination with 808 nm NIR laser irradiation may be promising for targeting and photothermal cancer therapy with multiple mechanisms in future.

Tài liệu tham khảo

Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674. doi:10.1016/j.cbpa.2005.10.005 Bottini M, Rosato N, Bottini N (2011) PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules 12:3381–3393. doi:10.1021/bm201020h Chakravarty P, Marches R, Zimmerman NS et al (2008) Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci USA 105:8697–8702. doi:10.1073/pnas.0803557105 Chen C, Xie XX, Zhou Q et al (2012) EGF-functionalized single-walled carbon nanotubes for targeting delivery of etoposide. Nanotechnology 23:045104. doi:10.1088/0957-4484/23/4/045104 Duan J, Mansour HM, Zhang Y et al (2012) Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly (butyl cyanoacrylate) nanoparticles. Int J Pharm 426:193–201. doi:10.1016/j.ijpharm.2012.01.020 Egusquiaguirre SP, Igartua M, Hernández RM et al (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Trans Oncol 14:83–93. doi:10.1007/s12094-012-0766-6 Jeffrey LB, James MT (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952–1958. doi:10.1039/b201013p Joensuu H, Kellokumpu-Lehtinen PL et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. New Engl J Med 354:809–820. doi:10.1056/NEJMoa053028 Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660. doi:10.1158/0008-5472.CAN-08-1468 Liu X, Tao H, Yang K et al (2011a) Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32(1):144–151. doi:10.1016/j.biomaterials.2010.08.096 Liu Z, Liu D, Wang L et al (2011b) Docetaxel-loaded pluronic p123 polymeric micelles: in vitro and in vivo evaluation. Int J Mol Sci 12:1684–1696. doi:10.3390/ijms12031684 Low PS, Henne WA, Doorneweerd DD (2007) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129. doi:10.1021/ar7000815 Lucafò M, Pacor S, Fabbro C et al (2012) Study of a potential drug delivery system based on carbon nanoparticles: effects of fullerene derivatives in MCF7 mammary carcinoma cells. J Nanopart Res 14:1–13. doi:10.1007/s11051-012-0830-8 Magrez A, Kasas S, Salicio V et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125. doi:10.1021/nl060162e Mosallaei N, Jaafari MR, Hanafi-Bojd MY et al (2013) Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci 102:1994–2004. doi:10.1002/jps.23522 Müller RH, Maassen S, Schwarz C et al (1997) Solid lipid nanoparticles (SLN) as potential carrier for human use: interaction with human granulocytes. J Control Release 47:261–269 O’Neal DP, Hirsch LR, Halas NJ et al (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176. doi:org/10.1016/j.canlet.2004.02.004 Piao L, Liu Q, Li Y et al (2009) The adsorption of l-phenylalanine on oxidized single-walled carbon nanotubes. J Nanosci Nanotechno 9:1394–1399. doi:10.1166/jnn.2009.C164 Prato M, Kostarelos K, Bianco A (2007) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68. doi:10.1021/ar700089b Shi J, Zhang H, Wang L et al (2012) PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials 34:251–261. doi:10.1016/j.biomaterials.2012.09.039 Shi J, Ma R, Wang L et al (2013) The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment. Int J Nanomed 8:2361. doi:10.2147/IJN.S45407 Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162 Wang F (2008) Quantitative determination of the functional groups on carbon nanotubes. Dissertation, Shandong University Wang L, Zhang M, Zhang N et al (2011) Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int J Nanomed 6:2641–2652. doi:10.2147/IJN.S24167 Wang L, Shi J, Jia X et al (2013) NIR-/pH-responsive drug delivery of functionalized single-walled carbon nanotubes for potential application in cancer chemo-photothermal therapy. Pharm Res 30:2757–2771. doi:10.1007/s11095-013-1095-3 Wilbur DS, Chyan MK, Hamlin DK et al (2004) Reagents for astatination of biomolecules: comparison of the in vivo distribution and stability of some radioiodinated/astatinated benzamidyl and nido-carboranyl compounds. Bioconjug Chem 15:203–223. doi:10.1021/bc034175k Yang P, Sun J, Liu K et al (2008) Preparation and characteristics of docetaxel nanos-tructure lipid carriers. J Shenyang Pharm Univ 3:002 Zhang J, Qian Z, Gu Y (2009) In vivo anti-tumor efficacy of docetaxel-loaded thermally responsive nanohydrogel. Nanotechnology 20(32):325102. doi:10.1088/0957-4484/20/32/325102 Zhang H, Chen C, Hou L et al (2013) Targeting and hyperthermia of doxorubicin by the delivery of single-walled carbon nanotubes to EC-109 cells. J Drug Target 21(3):312–319. doi:10.3109/1061186X.2012.749880 Zhou F, Xing D, Ou Z et al (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14(2):021009. doi:10.1117/1.3078803 Zhou F, Wu S, Wu B et al (2011) Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small 7(19):2727–2735. doi:10.1002/smll.201100669