Folding in power-law viscous multi-layers

Stefan M. Schmalholz1, Daniel W. Schmid2
1Institute of Geology and Palaeontology, University of Lausanne, 1015 Lausanne, Switzerland
2Physics of Geological Processes, University of Oslo, 0316 Oslo, Norway

Tóm tắt

We study high-amplitude folding in layered rocks with two-dimensional numerical simulations. We employ the finite-element method to model shortening of an incompressible multi-layer with power-law viscous rheology. The Lagrangian numerical mesh is deformed and re-meshed to accurately follow the layer interfaces. Three settings are considered: (i) pure shearing of a confined multi-layer, (ii) simple shearing of a multi-layer above a detachment, and (iii) slump folding owing to gravity sliding. In our pure shear simulations, finite-amplitude folds always develop despite confinement and thin weak interlayers. The fold shapes can be significantly irregular, resulting from initial geometrical heterogeneities that are perturbations of the layer interfaces and differences in layer thickness. The bulk normal viscosity of the multi-layer decreases significantly with progressive folding. This structural softening decreases the bulk normal viscosities by a factor of 2–20. For simple shear, the multi-layer does not develop asymmetric fold shapes significantly. Fold axial planes in the multi-layer are mostly curved and not parallel. For slump folding, fold shapes can be significantly asymmetric exhibiting strongly curved fold axial planes and overturned fold limbs. The rheology of the competent layers has a major impact on the fold shapes for gravity-driven multi-layer folding.

Từ khóa


Tài liệu tham khảo

Ramsay J. G., 1967, Folding and fracturing of rocks

Price N. J., 1990, Analysis of geological structures

10.1111/j.1365-2117.2010.00490.x

Smoluchowski M., 1909, Über ein gewisses-Stabilitätsproblem der Elastizitätslehre, Akad. Wiss. Krakau. Math. Kl., 3, 3

Mase G. E., 1970, Continuum mechanics

Sedov L. I., 1994, Mechanics of continuous media

Thompson J. M. T., 1984, Elastic instability phenomena.

Bazant Z. P., 1991, Stability of structures: elastic, inelastic, fracture, and damage theories

Thompson J. M. T., 1973, A general theory of elastic stability

10.1016/0040-1951(77)90155-X

10.1098/rspa.1957.0187

10.1130/0016-7606(1961)72[1595:TOFOSV]2.0.CO;2

10.1115/1.3627365

10.1016/B978-0-444-89970-5.50039-X

Muhlhaus H. B., 1994, Computer methods and advances in geomechanics, 223

10.1016/S0012-821X(00)00210-7

10.1029/GL026341).

10.1115/1.3153742

10.1007/s005310050052

10.1098/rsta.1997.0118

10.1007/bf02769652

10.1016/j.jsg.2005.11.006

10.1016/j.jmps.2005.08.013

10.1016/0040-1951(70)90006-5

10.1098/rspa.1998.0294

10.1007/BF01820010

Ramberg H., 1963, Fluid dynamics of viscous buckling applicable to folding of layered rocks, Bull. Am. Assoc. Petr. Geol., 47, 484

10.2475/ajs.274.9.1029

10.1130/0016-7606(1975)86%3C1601:UTOTOO%3E2.0.CO;2

10.1130/0016-7606(1977)88%3C312:FOFBAM%3E2.0.CO;2

Batchelor G. K., 1967, An introduction to fluid dynamics

Johnson A. M., 1994, Folding of viscous layers

10.1016/j.jsg.2010.08.011

10.1016/j.tecto.2006.03.008

10.1016/0040-1951(73)90012-7

10.1016/0191-8141(92)90148-P

10.1130/0016-7606(1968)79[47:AMTOFR]2.0.CO;2

10.2475/ajs.278.8.1085

10.1016/j.tecto.2006.04.014

10.1016/0191-8141(93)90080-T

10.1046/j.0956-540x.2000.01371.x

10.1016/0040-1951(71)90065-5

10.1016/0031-9201(70)90010-5

10.1080/14786430500380175

10.1016/j.jsg.2009.07.009

10.1016/0191-8141(91)90103-P

10.1016/0040-1951(95)00021-E

10.1016/j.jsg.2008.01.002

10.1029/JB088iB09p07457

10.1029/JB091iB08p08314

Fletcher R. C., 2004, Gneiss domes in orogeny, 79

Turcotte D. L., 1982, Geodynamics. Applications of continuum physics to geological problems

10.1016/S0040-1951(01)00151-2

10.2475/ajs.266.3.167

10.1130/0016-7606(1964)75[563:TOIBOA]2.0.CO;2

10.1016/0040-1951(68)90052-8

10.1016/0040-1951(64)90020-4

10.1016/j.jsg.2006.05.008

10.1016/j.jsg.2009.10.004

10.1029/95JB01460

10.1098/rsta.1976.0079

10.1016/0040-1951(87)90332-5

10.1111/j.1365-246X.2010.04846.x

10.1029/2008jb005652

10.1098/rsta.1978.0008

10.1016/0191-8141(82)90028-1

10.1016/j.tecto.2004.02.011

10.1016/0012-821X(86)90134-2

10.1130/0016-7606(1965)76[833:FDOTTO]2.0.CO;2

10.1016/j.tecto.2003.11.014

10.1086/516024

10.1016/j.marpetgeo.2011.03.004

10.1016/0040-1951(87)90333-7

10.1016/j.jsg.2011.01.013

10.1029/2001jb000465

Bathe K.-J., 1996, Finite element procedures

Hughes T., 1987, The finite element method

Cuvelier C., 1986, Finite-element methods and the Navier-Stokes equations, 536, 10.1007/978-94-010-9333-0

10.1016/S0925-7721(01)00047-5

10.1016/j.epsl.2008.07.022

10.1029/2007gc001719

10.1130/0016-7606(1961)72[1621:EVOTTO]2.0.CO;2

10.1016/0191-8141(92)90147-O

10.1016/S0191-8141(98)00102-3

10.1016/0040-1951(75)90003-7

Mancktelow N. S., 2001, Tectonic modeling: a volume in honor of Hans Ramberg, 69

10.1016/S0191-8141(96)80030-7

10.1016/j.pepi.2008.08.007

10.1029/2001JB000355

10.1080/14786430500197785

10.1111/j.1365-3121.2004.00585.x

10.1144/gsjgs.133.4.0329

10.1023/a:1008398006403

10.1016/j.jsg.2010.05.002

Passchier C. W., 1996, Microtectonics

10.1029/2008tc002439

10.1029/1999TC900040

10.1016/0191-8141(85)90134-8

10.1080/14786430802320101

10.1016/j.jsg.2011.06.003

10.1016/j.tecto.2007.09.005

10.1016/j.tecto.2010.08.009