Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures

Journal of the European Ceramic Society - Tập 37 - Trang 2717-2725 - 2017
Lei Han1, Faliang Li1, Xiangong Deng1, Junkai Wang1, Haijun Zhang1, Shaowei Zhang2
1The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK

Tài liệu tham khảo

Kong, 2015, Effects of pyrolusite additive on the microstructure and mechanical strength of corundum-mullite ceramics, Ceram. Int., 41, 4294, 10.1016/j.ceramint.2014.11.116 Li, 2015, Fabrication and characterization of anorthite foam ceramics having low thermal conductivity, J. Eur. Ceram. Soc., 35, 267, 10.1016/j.jeurceramsoc.2014.08.045 Hou, 2015, Effects of pore shape and porosity on the dielectric constant of porous β-SiAlON ceramics, J. Eur. Ceram. Soc., 35, 4115, 10.1016/j.jeurceramsoc.2015.07.002 Wang, 2015, Preparation and characterization of porous MgAl2O4 spinel ceramic supports from bauxite and magnesite, Ceram. Int., 41, 7374, 10.1016/j.ceramint.2015.02.044 Liang, 2016, Fabrication of SiC reticulated porous ceramics with multi-layered struts for porous media combustion, Ceram. Int., 42, 13091, 10.1016/j.ceramint.2016.05.093 Talou, 2015, Processing of porous mullite ceramics using novel routes by starch consolidation casting, J. Eur. Ceram. Soc., 35, 1021, 10.1016/j.jeurceramsoc.2014.10.011 Wu, 2014, Novel porous Si3N4 ceramics prepared by aqueous gelcasting using Si3N4 poly-hollow microspheres as pore-forming agent, J. Eur. Ceram. Soc., 34, 1089, 10.1016/j.jeurceramsoc.2013.11.025 Deng, 2016, Effects of firing temperature on the microstructures and properties of porous mullite ceramics prepared by foam-gelcasting, Adv. Appl. Ceram., 32, 204, 10.1080/17436753.2015.1116820 Deng, 2016, Low cost foam-gelcasting preparation and characterization of porous magnesium aluminate spinel (MgAl2O4) ceramics, Ceram. Int., 42, 18215, 10.1016/j.ceramint.2016.08.145 Deng, 2015, Preparation and characterization of porous mullite ceramics via foam-gelcasting, Ceram. Int., 41, 9009, 10.1016/j.ceramint.2015.03.237 Gregorová, 2015, Processing, microstructure and elastic properties of mullite-based ceramic foams prepared by direct foaming with wheat flour, J. Eur. Ceram. Soc., 36, 109, 10.1016/j.jeurceramsoc.2015.09.028 Han, 2013, Porous anorthite ceramics with ultra-low thermal conductivity, J. Eur. Ceram. Soc., 33, 2573, 10.1016/j.jeurceramsoc.2013.04.006 Wu, 2014, Processing, microstructures and mechanical properties of aqueous gelcasted and solid-state-sintered porous SiC ceramics, J. Eur. Ceram. Soc., 34, 3469, 10.1016/j.jeurceramsoc.2014.05.031 Kocjan, 2013, Colloidal processing and partial sintering of high-performance porous zirconia nanoceramics with hierarchical heterogeneities, J. Eur. Ceram. Soc., 33, 3165, 10.1016/j.jeurceramsoc.2013.06.004 Yang, 2002, Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia, Acta Mater., 50, 2309, 10.1016/S1359-6454(02)00057-5 Rühle, 1984, Science and technology of Zirconia II, Am. Ceram. Soc. Lee, 2007, Lattice thermal conductivity of nanoporous Si: molecular dynamics study, Appl. Phys. Lett., 91, 10.1063/1.2817739 Alvarez, 2010, Pore-size dependence of the thermal conductivity of porous silicon: a phonon hydrodynamic approach, Appl. Phys. Lett., 97, 33100, 10.1063/1.3462936 Li, 2014, Hierarchically porous YSZ hollow spheres with ultralow thermal conductivity, Mater. Res. Bull., 57, 79, 10.1016/j.materresbull.2014.05.029 Mille, 2012, A structural and thermal conductivity study of highly porous, hierarchical polyhedral nanofoam shells made by condensing silica in microemulsion films on the surface of emulsified oil drops, J. Mater. Chem. A, 1, 1849, 10.1039/C2TA00451H Xu, 2013, Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage, Appl. Energy, 105, 229, 10.1016/j.apenergy.2013.01.005 Rottman, 2013, Removal of TiO2 nanoparticles by porous media: effect of filtration media and water chemistry, Chem. Eng. J., 217, 212, 10.1016/j.cej.2012.11.117 Liu, 2016, Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent, Ceram. Int., 42, 8221, 10.1016/j.ceramint.2016.02.032 Zhai, 2005, Influence of rheological behavior of aqueous Al2O3/nano-TiO2 slurry on the characteristics of powders prepared by spray pelletization, Mater. Sci. Eng. A, 392, 1, 10.1016/j.msea.2004.06.061 Guo, 2012, Rheological properties and spray-drying behaviors of nano-SiC based aqueous slurry, Mech. Mater., 46, 11, 10.1016/j.mechmat.2011.11.005 Shimizu, 2013, Thermal conductivity of high porosity alumina refractory bricks made by a slurry gelation and foaming method, J. Eur. Ceram. Soc., 33, 3429, 10.1016/j.jeurceramsoc.2013.07.001 Kunugi, 2009, Thermal conductivity of cristobalite, J. Am. Ceram. Soc., 55 Shackelford, 2000 Li, 2014, Preparation of zirconium carbide foam by direct foaming method, J. Eur. Ceram. Soc., 34, 3513, 10.1016/j.jeurceramsoc.2014.05.029 Li, 2016, Mullite whisker reinforced porous anorthite ceramics with low thermal conductivity and high strength, J. Eur. Ceram. Soc., 36, 761, 10.1016/j.jeurceramsoc.2015.10.002 Leach, 1993, The thermal conductivity of foams: I. Models for heat conduction, J. Phys. D: Appl. Phys., 26, 733, 10.1088/0022-3727/26/5/003 Hashin, 1962, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. App. Phys., 33, 3125, 10.1063/1.1728579 Landauer, 1952, The electrical resistance of binary metallic mixtures, J. App. Phys., 3, 779, 10.1063/1.1702301 Gong, 2014, A novel effective medium theory for modelling the thermal conductivity of porous materials, Int. J. Heat Mass Transf., 68, 295, 10.1016/j.ijheatmasstransfer.2013.09.043 Kittel, 1949, Interpretation of the thermal conductivity of glasses, Phys. Rev., 75, 972, 10.1103/PhysRev.75.972 Litovsky, 1996, Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: Part 2, refractories and ceramics with porosity exceeding 30%, J. Am. Ceram. Soc., 79, 1366, 10.1111/j.1151-2916.1996.tb08598.x Konka, 2015, Heat insulation analysis of an aluminum honeycomb sandwich structure, Int. J. Eng. Sci. Res. Technol., 1, 210 Rybdylova, 2016, A model for droplet heating and its implementation into ANSYS Fluent, Int. Commun. Heat Mass Transf., 76, 265, 10.1016/j.icheatmasstransfer.2016.05.032