Fly visual course control: behaviour, algorithms and circuits

Nature Reviews Neuroscience - Tập 15 Số 9 - Trang 590-599 - 2014
Alexander Borst1
1Department: Circuits–Computation–Models / Borst, MPI of Neurobiology, Max Planck Society

Tóm tắt

Từ khóa


Tài liệu tham khảo

Strausfeld, N. J. Atlas of an Insect Brain (Springer, 1976).

Geiger, G. & Nässel, D. R. Visual orientation behaviour of flies after selective laser beam ablation of interneurons. Nature 293, 398–399 (1981).

Hausen, K. & Wehrhahn, C. Microsurgical lesion of horizontal cells changes optomotor yaw response in the blowfly Calliphora erythocephala. Proc. R. Soc. Lond. B 219, 211–216 (1983).

Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

Pfeiffer, B. D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. Nature Neurosci. 12, 229–234 (2009).

Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

Chiappe, M. E., Seelig, J. D., Reiser, M. B. & Jayaraman, V. Walking modulates speed sensitivity in Drosophila motion vision. Curr. Biol. 20, 1470–1475 (2010).

Seelig, J. D. & Jayaraman, V. Feature detection and orientation tuning in the Drosophila central complex. Nature 503, 262–266 (2013). Using two-photon calcium imaging in tethered walking and flying D. melanogaster , the authors demonstrate that ring neurons of the central complex represent visual features in a retinotopic arrangement.

Hardie, R. C. & Raghu, P. Visual transduction in Drosophila. Nature 413, 186–193 (2001).

Braitenberg, V. Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967).

Kirschfeld, K. Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von MUSCA. Exp. Brain Res. 3, 248–270 (in German) (1967).

Salcedo, E. et al. Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J. Neurosci. 19, 10716–10726 (1999).

Morante, J. & Desplan, C. The color-vision circuit in the medulla of Drosophila. Curr. Biol. 18, 553–565 (2008).

Karuppudurai, T. et al. A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in Drosophila. Neuron 81, 603–615 (2014).

Menne, D. & Spatz, H. C. Color vision in Drosophila melanogaster. J. Comp. Physiol. A 114, 301–312 (1977).

Schnaitmann, C., Garbers, C., Wachtler, T. & Tanimoto, H. Color discrimination with broadband photoreceptors. Curr. Biol. 23, 2375–2382 (2013).

Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. Motion vision is independent of color in Drosophila. Proc. Natl Acad. Sci. USA 105, 4910–4915 (2008).

Wernet, M. F. et al. Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22, 12–20 (2012).

Weir, P. T. & Dickinson, M. H. Flying Drosophila orient to sky polarization. Curr. Biol. 22, 21–27 (2012).

Meinertzhagen, I. A. & O'Neil, S. D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol. 305, 232–263 (1991).

Hardie, R. C. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339, 704–706 (1989).

Laughlin, S. B., Howard, J. & Blakeslee, B. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc. R. Soc. Lond. B 231, 437–467 (1987).

Zheng, L. et al. Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I. dynamics. PLoS ONE 4, e4307 (2009).

Cajal, S. R. & Sanchez, D. Contribucion al Conocimiento de los Centros Nerviosos de los Insectos (in Spanish) (Madrid Imprenta de Hijos de Nicholas Moja, 1915).

Fischbach, K. F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).

Takemura, S. Y., Lu, Z. & Meinertzhagen, I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509, 493–513 (2008).

Takemura, S. Y. et al. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr. Biol. 21, 2077–2084 (2011).

Maisak, M. S. et al. A directional tuning map of Drosophila elementary motion detectors. Nature 500, 212–216 (2013). The first recordings from T4 and T5 cells, describing their selectivity for ON and OFF motion and directional tuning to the four cardinal directions.

Meier, M. et al. Neural circuit components of the Drosophila OFF motion vision pathway. Curr. Biol. 24, 385–392 (2014).

Strother, J. A., Nern, A. & Reiser, M. B. Direct observation of ON and OFF pathways in the Drosophila visual system. Curr. Biol. 24, 976–983 (2014).

Mu, L., Ito, K., Bacon, J. P. & Strausfeld, N. J. Optic glomeruli and their inputs in Drosophila share an organizational ground pattern with the antennal lobes. J. Neurosci. 32, 6061–6071 (2012).

Strausfeld, N. J. & Bassemir, U. K. Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala. Cell Tissue Res. 240, 617–640 (1985).

Strausfeld, N. J. & Seyan, H. S. Convergence of visual, haltere and prosternal inputs at neck motor neurons of Calliphora erythrocephala. Cell Tissue Res. 240, 601–615 (1985).

Gronenberg, W., Milde, J. J. & Strausfeld, N. J. Oculomotor control in calliphorid flies: organization of descending neurons to neck motor-neurons responding to visual-stimuli. J. Comp. Neurol. 361, 267–284 (1995).

Van Hateren, J. H. & Schilstra, C. Blowfly flight and optic flow. II. Head movements during flight. J. Exp. Biol. 202, 1491–1500 (1999).

Blondeau, J. & Heisenberg, M. The three-dimensional optomotor torque system of Drosophila melanogaster. Studies on wildtype and the mutant optomotor blind H31. J. Comp. Physiol. 145, 321–329 (1982).

Hengstenberg, R. Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. J. Comp. Physiol. A 163, 151–165 (1988).

Hassenstein, B. & Reichardt, W. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. 11b, 513–524 (in German) (1956).

Reichardt, W. Evaluation of optical motion information by movement detectors. J. Comp. Physiol. A 161, 533–547 (1987).

Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in the rabbit's retina. J. Physiol. 178, 477–504 (1965).

Adelson, E. H. & Bergen, J. R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

Borst, A., Haag, J. & Reiff, D. F. Fly motion vision. Annu. Rev. Neurosci. 33, 49–70 (2010).

Mronz, M. & Lehmann, F. O. The free-flight response of Drosophila to motion of the visual environment. J. Exp. Biol. 211, 2026–2045 (2008).

Strauss, R., Schuster, S. & Goetz, K. G. Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1281–1296 (1997).

Koenderink, J. J. & van Doorn, A. J. Facts on optic flow. Biol. Cybern. 56, 247–254 (1987).

Tammero, L. F. & Dickinson, M. H. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J. Exp. Biol. 205, 2785–2798 (2002).

Tammero, L. F., Frye, M. A. & Dickinson, M. H. Spatial organization of visuomotor reflexes in Drosophila. J. Exp. Biol. 207, 113–122 (2004).

Duistermars, B. J., Chow, D. M., Condro, M. & Frye, M. A. The spatial, temporal and contrast properties of expansion and rotation flight optomotor response in Drosophila. J. Exp. Biol. 210, 3218–3227 (2007).

Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looing targets by executing rapid visually directed banked turns. Science 344, 172–177 (2014). This study demonstrates the incredible manoeuvrability of D. melanogaster , as revealed by high-speed video and sophisticated online visual stimulation in free flight.

Card, G. & Dickinson, M. H. Visually mediated motor planning on the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).

Braitenberg, V. & Taddei Ferretti, C. Landing reaction of Musca domestica induced by visual stimuli. Naturwissenschaften 6, 155 (1966).

Wehrhahn, C., Hausen, K. & Zanker, J. M. Is the landing response of the housefly (Musca) driven by motion of a flow field? Biol. Cybern. 41, 91–99 (1981).

Wagner, H. Flow-field variables trigger landing in flies. Nature 297, 147–148 (1982).

Borst, A. Time course of the houseflies' landing response. Biol. Cybern. 54, 379–383 (1986).

Borst, A. & Bahde, S. Spatio-temporal integration of motion: a simple strategy for safe landing in flies. Naturwissenschaften 75, 265–267 (1988).

Borst, A. & Bahde, S. What kind of movement detector is triggering the landing response of the housefly? Biol. Cybern. 55, 59–69 (1986).

Van Breugel, F. & Dickinson, M. H. The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster. J. Exp. Biol. 215, 1783–1798 (2012).

Reichardt, W. & Wenking, H. Optical detection and fixation of objects in fixed flying flies. Naturwissenschaften 56, 424 (1969).

Poggio, T. & Reichardt, W. A theory of the pattern induced flight orientation of the fly Musca domestica. Kybernetik 12, 185–203 (1973).

Goetz, K. G. Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J. Exp. Biol. 128, 35–46 (1987).

Bahl, A., Ammer, G., Schilling, T. & Borst, A. Object tracking in motion-blind flies. Nature Neurosci. 16, 730–738 (2013). This paper describes the genetic isolation of an independent position system.

Pick, B. Visual flicker induces orientation behavior in the fly Musca. Z. Naturforsch. 29C, 3120–3312 (1974).

Aptekar, J. W., Shoemaker, P. A. & Frye, M. A. Figure tracking by flies is supported by parallel visual streams. Curr. Biol. 22, 482–487 (2012).

Fox, J. L., Aptekar, J. W., Zolotova, N. M., Shoemaker, P. A. & Frye, M. A. Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses. J. Exp. Biol. 217, 558–569 (2014).

Maimon, G., Straw, A. D. & Dickinson, M. H. A simple vision-based algorithm for decision making in flying Drosophila. Curr. Biol. 18, 464–470 (2008).

Buelthoff, H., Goetz, K. G. & Herre, M. Recurrent inversion of visual orientation in the walking fly, Drosophila melanogaster. J. Comp. Physiol. 148, 471–481 (1982).

Greenspan, R. J. & Ferveur, J.-F. Courtship in Drosophila. Annu. Rev. Genet. 34, 205–232 (2000).

Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern. 45, 143–156 (1982).

Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern. 46, 67–79 (1982).

Hengstenberg, R. Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. A 149, 179–193 (1982).

Hengstenberg, R., Hausen, K. & Hengstenberg, B. The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erytrocephala. J. Comp. Physiol. A 149, 163–177 (1982).

Scott, E. K., Raabe, T. & Luo, L. Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J. Comp. Neurol. 454, 470–481 (2002).

Raghu, S. V., Joesch, M., Borst, A. & Reiff, D. F. Synaptic organization of lobula plate tangential cells in Drosophila: GABA-receptors and chemical release sites. J. Comp. Neurol. 502, 598–610 (2007).

Joesch, M., Plett, J., Borst, A. & Reiff, D. F. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18, 368–374 (2008).

Schnell, B. et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J. Neurophysiol. 103, 1646–1657 (2010).

Hausen, K., Wolburg-Buchholz, K. & Ribi, W. A. The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res. 208, 371–387 (1980).

Hengstenberg, R., Buelthoff, H. & Hengstenberg, B. in Functional Neuroanatomy (ed. Strausfeld, N. J.) 183–205 (Springer, 1983).

Hopp, E., Borst, A. & Haag, J. Subcellular mapping of dendritic activity in optic flow processing neurons. J. Comp. Physiol. A 200, 359–370 (2014).

Heisenberg, M., Wonneberger, R. & Wolf, R. optomotor-blindH31: a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. A 124, 287–296 (1978).

Haikala, V., Joesch, M., Borst, A. & Mauss, A. Optogenetic control of fly optomotor responses. J. Neurosci. 33, 13927–13934 (2013).

Schnell, B., Weir, P. T., Roth, E., Fairhall, A. L. & Dickinson, M. H. Cellular mechanisms for integral feedback in visually guided behavior. Proc. Natl Acad. Sci. USA 111, 5700–5705 (2014).

Egelhaaf, M. & Borst, A. Transient and steady-state response properties of movement detectors. J. Opt. Soc. Am. A 6, 116–127 (1989).

Egelhaaf, M., Borst, A. & Reichardt, W. Computational structure of a biological motion detection system as revealed by local detector analysis in the fly's nervous system. J. Opt. Soc. Am. A 6, 1070–1087 (1989).

Single, S. & Borst, A. Dendritic integration and its role in computing image velocity. Science 281, 1848–1850 (1998).

Brenner, N., Bialek, W. & de Ruyter van Steveninck, R. Adaptive rescaling maximizes information transmission. Neuron 26, 695–702 (2000).

Reisenman, C., Haag, J. & Borst, A. Adaptation of response transients in fly motion vision. I: Experiments. Vision Res. 43, 1291–1307 (2003).

Borst, A., Reisenman, C. & Haag, J. Adaptation of response transients in fly motion vision. II: Model studies. Vision Res. 43, 1309–1322 (2003).

Haag, J., Denk, W. & Borst, A. Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proc. Natl Acad. Sci. USA 101, 16333–16338 (2004).

Borst, A., Flanagin, V. & Sompolinsky, H. Adaptation without parameter change: dynamic gain control in motion detection. Proc. Natl Acad. Sci. USA 102, 6172–6176 (2005).

Borst, A. Drosophila's view on insect vision. Curr. Biol. 19, R36–R47 (2009).

Venken, K. J. T., Simpson, J. H. & Bellen, H. J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72, 202–230 (2011). A comprehensive overview of genetic techniques available in D. melanogaster to target and manipulate individual neurons.

Bausenwein, B., Dittrich, A. P. M. & Fischbach, K. F. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res. 267, 17–28 (1992).

Buchner, E., Buchner, S. & Bülthoff, I. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J. Comp. Physiol. A 155, 471–483 (1984).

Bausenwein, B. & Fischbach, K. F. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res. 270, 25–35 (1992).

Rister, J. et al. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56, 155–170 (2007).

Joesch, M., Schnell, B., Raghu, S. V., Reiff, D. F. & Borst, A. ON and OFF pathways in Drosophila motion vision. Nature 468, 300–304 (2010). The discovery of parallel ON and OFF pathways in D. melanogaster motion vision.

Schnell, B., Raghu, S. V., Nern, A. & Borst, A. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A 198, 389–395 (2012).

Reiff, D. F., Plett, J., Mank, M., Griesbeck, O. & Borst, A. Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nature Neurosci. 13, 973–978 (2010).

Clark, D. A., Bursztyn, L., Horowitz, M. A., Schnitzer, M. J. & Clandinin, T. R. Defining the computational structure of the motion detector in Drosophila. Neuron 70, 1165–1177 (2011).

Eichner, H., Joesch, M., Schnell, B., Reiff, D. F. & Borst, A. Internal structure of the fly elementary motion detector. Neuron 70, 1155–1164 (2011).

Joesch, M., Weber, F., Eichner, H. & Borst, A. Functional specialization of parallel motion detection circuits in the fly. J. Neurosci. 33, 902–905 (2013).

Takemura, S. Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013). This study reveals the connectivity within the ON motion pathway, with Mi1 and Tm3 cells providing input to T4 cell dendrites.

Shinomiya, K. et al. Candidate neural substrates of Off-edge motion detection in Drosophila. Curr. Biol. 24, 1062–1070 (2014). This paper reveals the connectivity within the OFF motion pathway, with Tm1, Tm2, Tm4 and Tm9 cells providing input to T5 cell dendrites.

Silies, M. et al. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79, 111–127 (2013).

Torre, V. & Poggio, T. A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. Lond. B 202, 409–416 (1978).

Hausselt, S. E., Euler, T., Detwiler, P. B. & Denk, W. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol. 5, e185 (2007).

Mauss, A., Meier, M., Serbe, E. & Borst, A. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J. Neurosci. 34, 2254–2263 (2014). The first application of optogenetics for studying the connectivity and pharmacology of synaptic transmission in the D. melanogaster visual system.

Borst, A. Fly visual interneurons responsive to image expansion. Zool. Jb. Physiol. 95, 305–313 (1991).

DeVries, S. E. J. & Clandinin, T. R. Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr. Biol. 22, 353–362 (2012).

Hatsopoulos, N., Gabbiani, F. & Laurent, G. Elementary computation of object approach by a wide-field neuron. Science 270, 1000–1003 (1995).

Egelhaaf, M. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurones. Biol. Cybern. 52, 195–209 (1985).

Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual motion processing in Drosophila. Nature Neurosci. 13, 393–399 (2010). The first whole-cell patch recording of large-field motion-sensitive cells during tethered flight, demonstrating their enhanced gain when flies are flying.

Jung, S. N., Borst, A. & Haag, J. Flight activity alters velocity tuning of fly motion-sensitive neurons. J. Neurosci. 31, 9231–9237 (2011).

Longden, K. D. & Krapp, H. G. State-dependent performance of optic-flow processing interneurons. J. Neurophysiol. 102, 3606–3618 (2009).

Suver, M. P., Mamiya, A. & Dickinson, M. H. Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila. Curr. Biol. 22, 2294–2302 (2012).

Mayer, M., Vogtmann, K., Bausenwein, B., Wolf, R. & Heisenberg, M. Flight control during ‚free yaw turns' in Drosophila melanogaster. J. Comp. Physiol. A 163, 389–399 (1988).

Nalbach, G. & Hengstenberg, R. The halteres of the blowfly Calliphora. II. Three-dimensional organization of compensatory reactions to real and simulated rotations. J. Comp. Physiol. A 175, 695–708 (1994).

Chan, W. P., Prete, F. & Dickinson, M. H. Visual input to the efferent control system of a fly's “gyroscope”. Science 280, 289–292 (1998).

Sherman, A. & Dickinson, M. H. A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. J. Exp. Biol. 206, 295–302 (2003).

Bender, J. A. & Dickinson, M. H. A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster. J. Exp. Biol. 209, 4597–4606 (2009).

Chow, D. M. & Frye, M. A. Context-dependent olfactory enhancement of optomotor flight control in Drosophila. J. Exp. Biol. 211, 2478–2485 (2008).

Haag, J., Wertz, A. & Borst, A. Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J. Neurosci. 27, 1992–2000 (2007).

Wertz, A., Borst, A. & Haag, J. Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the fly. J. Neurosci. 28, 3131–3140 (2008).

Huston, S. J. & Krapp, H. G. Visuomotor transformation in the fly gaze stabilization system. PLoS Biol. 6, e173 (2008).

Wertz, A., Gaub, B., Plett, J., Haag, J. & Borst, A. Robust coding of ego-motion in descending neurons of the fly. J. Neurosci. 29, 14993–15000 (2009).

Huston, S. J. & Krapp, H. G. Nonlinear integration of visual and haltere inputs in fly neck motor neurons. J. Neurosci. 29, 13097–13105 (2009).

Haag, J., Wertz, A. & Borst, A. Central gating of fly optomotor response. Proc. Natl Acad. Sci. USA 107, 20104–20109 (2010).

Hanesch, U., Fischbach, K. F. & Heisenberg, M. Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366 (1989).

Weir, P. T., Schnell, B. & Dickinson, M. H. Central complex neurons exhibit behaviorally gated responses to visual motion in Dros. J. Neurophysiol. 111, 62–71 (2014).

Breedlove, S. M., Watson, N. V. & Rosenzweig, M. R. Biological Psychology (Sinauer, 2007).

Cuntz, H. et al. Preserving neural function under extreme scaling. PLoS ONE 8, e71540 (2013).

Freifeld, L., Clark, D. A., Schnitzer, M. J., Horowitz, M. A. & Clandinin, T. R. GABAergic lateral interactions tune the early stages of visual processing in Drosophila. Neuron 78, 1075–1089 (2013).

Tuthill, J. C., Nern, A., Holtz, S. L., Rubin, G. M. & Reiser, M. B. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79, 128–140 (2013).