Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nền tảng phân tích định lượng bằng huỳnh quang và đo màu cho acid phosphatase thông qua AIE chỉ đạo bởi ion Cerium và hoạt tính giống oxy-đường
Springer Science and Business Media LLC - Trang 1-10 - 2023
Tóm tắt
Một phương pháp phát hiện acid phosphatase (ACP) bằng huỳnh quang và đo màu được phát triển một cách dễ dàng và nhạy bén thông qua sự phát sáng do tập hợp chỉ đạo bởi ion Ce(III) của các cụm nano vàng được bảo vệ bằng glutathione (GSH-AuNCs) và hoạt tính giống oxy của ion Ce(IV). Các ion Ce(IV) tự do cho thấy hoạt tính giống oxy mạnh mẽ, xúc tác oxy hóa chất không màu 3,3′,5,5′-tetramethylbenzidine (TMB) thành sản phẩm màu xanh oxTMB trong sự hiện diện của O2 hòa tan, do đó kích hoạt một phản ứng màu sắc đáng kể được phát hiện bằng thị giác. ACP có khả năng thủy phân L-ascorbic acid-2-phosphate (AAP) để sản xuất acid ascorbic (AA). AA có khả năng khử ion Ce(IV) thành ion Ce(III), do đó làm giảm hoạt tính giống oxy của ion Ce(IV). Trong khi đó, các ion Ce(III) kích thích AIE của GSH-AuNCs, dẫn đến sự tăng cường tín hiệu huỳnh quang của GSH-AuNCs. Cả hai nền tảng phân tích hai chế độ huỳnh quang và đo màu đều cho thấy phản ứng nhạy bén đối với ACP, cung cấp giới hạn phát hiện thấp tới 0.101 U/L và 0.200 U/L, tương ứng. Bên cạnh đó, nền tảng phát hiện hai chế độ này có tiềm năng cho việc phân tích ACP trong mẫu huyết thanh con người và sàng lọc các chất ức chế ACP. Với hiệu suất tốt và tính ứng dụng, nghiên cứu này cho thấy ứng dụng đầy hứa hẹn trong việc xác định hoạt động của ACP một cách thuận tiện và đáng tin cậy.
Từ khóa
Tài liệu tham khảo
Vernon CA, Gauldie J, Hanson JM, Humphreys JM, Smith PE, Lawrence AJ, Banks BEC. Acid phosphatases. Nature. 1965;208:382–3.
Deng SR, Lu LH, Li JY, Du ZZ, Liu TT, Li WJ, Xu FS, Shi L, Shou HX, Wang C. Purple acid phosphatase 10c encodes a major acid phosphatase and regulates the plant growth under phosphate deficient condition in rice. J Exp Bot. 2020;71(14):4321–32.
Bottini E, Carapella E, Scacchi R, Lucarini N, Gloria-Bottini F, Pascone R, Bonci E, Maggioni G. Serum haptoglobin appearance during neonatal period is associated with acid phosphatase (ACP1) phenotype. Early Human Dev. 1985;10(3–4):237–43.
Howard PJ, Fraley EE. Elevation of the acid phosphatase in benign prostatic disease. J Urol. 1965;94(6):687–90.
Han YX, Quan KJ, Chen J, Qiu HD. Advances and prospects on acid phosphatase biosensor. Biosens Bioelectron. 2020;170:112671.
Dai MS, Lo HC, Chen LJ, Tseng SF. Prognostic significance of tartrate-resistant acid phosphatase expression in breast cancer. J Clin Oncol. 2019;37(15):12594–5.
Yamauchi YJ, Ido M, Ohta M, Maeda H. High performance liquid chromatography with an electrochemical detector in the cathodic mode as a tool for the determination of p-nitrophenol and assay of acid phosphatase in urine samples. Chem Pharm Bull. 2004;52(5):552–5.
Huang MJ, Tian JY, Zhou CH, Bai P, Lu JS. Photoelectrochemical determination for acid phosphatase activity based on an electron inhibition strategy. Sens Actuators, B Chem. 2020;307:127654.
Foti AG, Herschman H, Cooper JF. Comparison of human prostatic acid phosphatase by measurement of enzymatic activity and by radioimmuno-assay. Clin Chem. 1977;23(1):95–9.
Na WD, Hu TY, Su XG. Sensitive detection of acid phosphatase based on graphene quantum dots nanoassembly. Analyst. 2016;16(141):4926–32.
Chena YY, Wanga ZZ, Hao XL, Li FL, Zheng YJ, Zhang JZ, Lin XH, Weng SH. Selective and sensitivefluorescent monitoring of acid phosphatase (ACP)activity under neutral conditions through the ACP enzymatic catalysis of dopamine as a new substrate to polydopamine. Sens Actuators, B Chem. 2019;297:12678.
Al-mashriqi HS, Zheng HH, Qi SD, Zhai HL. Gold nanoclusters reversible switches based on aluminumions-triggered for detection of pyrophosphate and acid phosphatase activity. J Mol Struct. 2021;1242:130755.
Zhu ZM, Lin XY, Wu LN, Zhao CF, Li SG, Liu AL, Lin XH, Lin LQ. Nitrogen-doped carbon dots as a ratiometric fluorescent probe for determination of the activity of acid phosphatase, for inhibitor screening, and for intracellular imaging. Microchim Acta. 2019;186:558.
Qian ZS, Chai LJ, Zhou Q, Huang YY, Tang C, Chen JR, Feng H. Reversible fluorescent nanoswitch based on carbon quantum dots nanoassembly for real-time acid phosphatase activity monitoring. Anal Chem. 2015;87(14):7332–9.
Zheng SS, Gu HZ, Yin DY, Zhang JL, Li W, Fu Y. Biogenic synthesis of AuPd nanocluster as a peroxidase mimic and its application for colorimetric assay of acid phosphatase. Colloids Surf, A. 2020;589(20):124444.
Liu P, Zhao MG, Zhu HJ, Zhang ML, Li X, Wang MZ, Liu BX, Pan JM, Ni XH. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. J Hazard Mater. 2022;423:127077.
Li Q, Guo YM, He XY, Li GL. Bifunctional Cu(II)-containing PDA-PEI docopolymer dots: demonstration of a dual-mode platform for colorimetric-fluorescent detection of glyphosate in the environment. Talanta. 2023;265(1):124865.
Xia M, Zhao XE, Sun J, Zheng ZJ, Zhu SY. Graphene quantum dots combined with the oxidase-mimicking activity of Ce4+ for ratiometric fluorescent detection of Ce4+ and alendronate sodium. Sens Actuators, B Chem. 2020;319(15):128321.
Liang L, Zhao ZH, Ye FG, Zhao SL. Rapid and sensitive colorimetric detection of dopamine based on the enhanced-oxidase mimicking activity of cerium(IV). New J Chem. 2021;45:6780–6.
Pu S, Shi CT, Zhang JL, Hou XD, Wu L. Ce4+-based self-validated portable platform for highly selective and anti-interference visual sensing of phosphate. Sens Actuators, B Chem. 2023;393(15):134245.
Li Q, Guo YM, He XY, Li GL. Sensitive and label-free colorimetric detection of glyphosate based on the suppression peroxidase-mimicking activity of Cu(II) ions. Molecules. 2023;28(12):4630.
Song HW, Wang HY, Li X, Peng YX, Pan JM, Niu XH. Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(IV) ions. Anal Chim Acta. 2018;1044(31):154–61.
Peng HP, Jian ML, Huang ZN, Wang WJ, Deng HH, Wu WH, Liu AL, Xia XH, Chen W. Facile electrochemiluminescence sensing platform based on high-quantum-yield gold nanocluster probe for ultrasensitive glutathione detection. Biosens Bioelectron. 2018;105(15):71–6.
Qi DY, Wang C, Gao YC, Li HW, Wu YQ. Heteroatom doping and supramolecular assembly promoted copper nanoclusters to be a stable & high fluorescence sensor for trace amounts of ATP determination. Sens Actuators, B Chem. 2022;358:131469.
Wu YF, Gao YF, Du JX. Bifunctional gold nanoclusters enable ratiometric fluorescence nanosensing of hydrogen peroxide and glucose. Talanta. 2019;197(15):599–604.
Liu YB, Zhang Y, Zhang W, Wang XH, Sun Y, Huang YB, Ma PY, Ding J, Song DQ. Ratiometric fluorescent sensor based on MoS2 QDs and AuNCs for determination and bioimaging of alkaline phosphatase. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;262(5):120087.
Luo ZT, Yuan X, Yu Y, Zhang QB, Leong DT, Lee JY, Xie JP. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J Am Chem Soc. 2012;134(40):16662–70.
Kateshiya MR, Malek NI, Murthy ZVP, Kailasa SK. Designing of glutathionelactose derivative for the fabrication of gold nanoclusters with red fluorescence: sensing of Al3+ and Cu2+ ions with two different mechanisms. Opt Mater. 2020;100:109704.
Qu F, Zhao LY, Han WL, You JM. Ratiometric detection of Zn2+and Cd2+ based on self-assembled nanoarchitectures with dual emissions involving aggregation enhanced emission (AEE) and its application. J Mater Chem B. 2018;6(30):4995–5002.
Wu XT, Li CX, Liao SC, Li L, Wang TT, Su ZM, Wang CG, Zhao JH, Sui CP, Lin J. Silica encapsulated Gd3+-aggregated gold nanoclusters for in vitro and in vivo multimodal cancer imaging. Chem Eur J. 2014;20(29):8876–82.
Ji LY, Guo YH, Hong SN, Wang ZL, Wang KW, Chen X, Zhang JY, Hu JM, Pei RJ. Label-free detection of Pb2+ based on aggregation-induced emission enhancement of Au-nanoclusters. RSC Adv. 2015;5(46):36582–6.