Fluoroalcohol-mediated reductive iodonio-Claisen rearrangement: Synthesis of complex ortho-substituted-allyl iodoarenes
Tóm tắt
Reductive iodonio-Claisen rearrangement (RICR) involving λ3-iodanes and allyl or substituted-allyl silanes in fluoroalcohols, such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and 2,2,2-trifluoroethanol (TFE), was studied for the synthesis of complex ortho-allyl or substituted-allyl iodoarenes. In comparison to the previously reported condition involving boron trifluoride diethyl etherate, the RICR mediated by fluoroalcohols was found to proceed more effectively. The resulting complex ortho-allyl iodoarenes are useful synthetic intermediates and can be readily converted to various heterocyclic compounds.
Tài liệu tham khảo
Stang P J, Zhdankin V V. Organic polyvalent iodine compounds. Chemical Reviews. 1996, 96(3): 1123–1178
Zhdankin V V, Stang P J. Recent developments in the chemistry of polyvalent iodine compounds. Chemical Reviews. 2002, 102(7): 2523–2584
Zhdankin V V, Stang P J. Chemistry of polyvalent iodine. Chemical Reviews. 2008, 108(12): 5299–5358
Ochiai M. Hypervalent halogans and their reactions in organic synthesis. Yakugaku Zasshi. Journal of the Pharmaceutical Society of Japan. 2009, 129(3): 321–334
Zhdankin V V. Hypervalent iodine (III) reagents in organic synthesis. ARKIVOC. 2009, 1(1): 1–62
Merritt E A, Olofsson B. α-Functionalization of carbonyl compounds using hypervalent iodine reagents. Synthesis (Stuttgart), 2011, 4: 517–538
Silva L F Jr, Olofsson B. Hypervalent iodine reagents in the total synthesis of natural products. Natural Product Reports. 2011, 28(10): 1722–1754
Duschek A, Kirsch S F. 2-Iodoxybenzoic acid—a simple oxidant with a dazzling array of potential applications. Angewandte Chemie International Edition, 2011, 50(7): 1524–1552
Duschek A, Kirsch S. For an overview of IBX-mediated oxidations. Angewandte Chemie. 2011, 123: 1562–1590
Ochiai M, Ito T, Takaoka Y, Masaki Y. Generation of allenyliodinanes and their reductive iodonio-Claisen rearrangement. Journal of the American Chemical Society. 1991, 113(4): 1319–1323
Ochiai M, Ito T, Masaki Y. Ipso selectivity in the reductive iodonio-Claisen rearrangement of allenyl(p-methoxyaryl)iodinanes. Journal of the Chemical Society. Chemical Communications. 1992, (1): 15–16
Ochiai M, Ito T. Solvent effects on ipso versus ortho selectivity in the reductive iodonio-Claisen rearrangement of allenyl (p-methoxyphenyl) iodane. Journal of Organic Chemistry. 1995, 60(7): 2274–2275
Ochiai M, Kida M, Okuyama T. On the mechanism of nucleophilic substitution of allenyl (aryl) iodine (III): Formation of propargyl cation and competition with Sigmatropic rearrangement. Tetrahedron Letters. 1998, 39(34): 6207–6210
Gately D A, Luther T A, Norton J R, Miller M M, Anderson O P. Reaction of µ-oxobis [(trifluoromethanesulfonato)(phenyl) iodine (III)] with group 14 propargyl derivatives and a propargyl ether. Journal of Organic Chemistry. 1992, 57(24): 6496–6502
Lee K, Kim D Y, Oh D Y. Reaction of allyltrimethylsilane with an aromatic compound using hypervalent organoiodine compound: A new allylation of aromatic compounds. Tetrahedron Letters. 1988, 29(6): 667–668
Van De Water R W, Hoarau C, Pettus T R R. Oxidative dearomatization of resorcinol derivatives: Useful conditions leading to valuable cyclohexa-2,5-dienones. Tetrahedron Letters. 2003, 44(27): 5109–5113
Zhu J, Germain A R, Porco J A. Synthesis of azaphilones and related molecules by employing cycloisomerization of O-alkynylbenzaldehydes. Angewandte Chemie International. 2004, 43(10): 1239–1243
Jia Z, Galvez E, Sebastian R M, Pleixats R, Alvarez-Larena A, Martin E, Vallribera A, Shafir A. An alternative to the classical alpha-arylation: The transfer of an intact 2-iodoaryl from ArI (O2CCF3)2. Angewandte Chemie International Edition. 2014, 53(42): 11298–11301
Khatri H R, Zhu J. Synthesis of complex ortho-allyliodoarenes employing reductive iodonio-Claisen rearrangement. Chemistry (Weinheim an der Bergstrasse, Germany). 2012, 18(39): 12232–12236
Nguyen H, Khatri H R, Zhu J. Reductive iodonio-Claisen rearrangement of iodothiophene diacetates with allylsilanes: Formal synthesis of Plavix®. Tetrahedron Letters. 2013, 54(40): 5464–5466
Bonnet-Delpon D, Bégué J P, Crousse B. Fluorinated alcohols: A new medium for selective and clean reaction. Synlett. 2004, (1): 18–29
Dohi T, Yamaoka N, Kita Y. Fluoroalcohols: Versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonium(III) salts. Tetrahedron. 2010, 66(31): 5775–5785
Kita Y, Yakura T, Tohma H, Kikuchi K, Tamura Y. A synthetic approach to discorhabdin alkaloids: Hypervalent iodine oxidation of p-substituted phenol derivatives to azacarbocyclic spirodienones. Tetrahedron Letters. 1989, 30(9): 1119–1120
Kita Y, Tohma H, Kikuchi K, Inagaki M, Yakura T. Hypervalent iodine oxidation of N-acyltyramines: Synthesis of quinol ethers, spirohexadienones, and hexahydroindol-6-ones. Journal of Organic Chemistry. 1991, 56(1): 435–438
Kita Y, Tohma H, Inagaki M, Hatanaka K, Kikuchi K, Yakura T. Hypervalent iodine oxidation of O-silylated phenol derivatives to azacarbocyclic spirodienones; Synthetic approach to the anticancer marine alkaloid, Discorhabdin C. Tetrahedron Letters. 1991, 32(18): 2035–2038
Kita Y, Tohma H, Inagaki M, Hatanaka K, Yakura T. Total synthesis of discorhabdin C: A general aza spiro dienone formation from O-silylated phenol derivatives using a hypervalent iodine reagent. Journal of the American Chemical Society. 1992, 114(6): 2175–2180
Kita Y, Arisawa M, Gyoten M, Nakajima M, Hamada R, Tohma H, Takada T. Oxidative intramolecular phenolic coupling reaction induced by a hypervalent iodine (III) reagent: Leading to galanthamine-type amaryllidaceae alkaloids. Journal of Organic Chemistry. 1998, 63(19): 6625–6633
Tohma H, Harayama Y, Hashizume M, Iwata M, Kiyono Y, Egi M, Kita Y. The first total synthesis of Discorhabdin A. Journal of the American Chemical Society. 2003, 125(37): 11235–11240
Kita Y, Tohma H, Hatanaka K, Takada T, Fujita S, Mitoh S, Sakurai H, Oka S. Hypervalent iodine-induced nucleophilic substitution of para-substituted phenol ethers. Generation of cation radicals as reactive intermediates. Journal of the American Chemical Society. 1994, 116(9): 3684–3691
Kita Y, Takada T, Mihara S, Whelan B A, Tohma H. Novel and direct nucleophilic sulfenylation and thiocyanation of phenol ethers using a hypervalent iodine (III) reagent. Journal of Organic Chemistry. 1995, 60(22): 7144–7148
Dohi T, Ito M, Morimoto K, Minamitsuji Y, Takenaga N, Kita Y. Versatile direct dehydrative approach for diaryliodonium (III) salts in fluoroalcohol media. Chemical Communications. 2007, 40(40): 4152–4154
Schadt F L, Bentley T W, Schleyer P R. The SN2-SN1 spectrum. 2. Quantitative treatments of nucleophilic solvent assistance. A Scale of solvent nucleophilicities. Journal of the American Chemical Society, 1976, 98(24): 7667–7675
Kuwabe S, Torraca K E, Buchwald S L. Palladium-catalyzed intramolecular C–O bond formation. Journal of the American Chemical Society. 2001, 123(49): 12202–12206
Shafir A, Buchwald S L. Highly selective room-temperature coppercatalyzed C–N coupling reactions. Journal of the American Chemical Society. 2006, 128(27): 8742–8743
Che C Y, Dormer P G. Synthesis of benzo [b] furans via CuIcatalyzed ring closure. Journal of Organic Chemistry. 2005, 70(17): 6964–6967