Fluorination-substitution effect on all-small-molecule organic solar cells
Tóm tắt
Due to the strong crystallinity and anisotropy of small molecules, matched molecular photoelectric properties and morphologies between small molecules and non-fullerene acceptors are especially important in all-small-molecule organic solar cells (OSCs). Introducing fluorine atoms has been proved as an effective strategy to achieve a high device performance through tuning molecular energy levels, absorption and assembly properties. Herein, we designed a novel benzodithiophene-based small molecule donor BDTF-CA with deep highest occupied molecular orbital (HOMO) energy level. All-small-molecule OSCs were fabricated by combing non-fullerene acceptor IDIC with different fluorine-atom numbers. Two or four fluorine atoms were introduced to the end-capped acceptor of IDIC, which are named as IDIC-2F and IDIC-4F, respectively. With the increase of fluorination from IDIC to IDIC-4F, the open circuit voltage (Voc) of the devices decreased, while hole and electron mobilities of the active layers increased by one order of magnitude. Contributed to the most balanced Voc, short-circuit current (Jsc) and fill factor (FF), the device based on BDTF-CA/IDIC-2F achieved the highest power conversion efficiency of 9.11%.
Tài liệu tham khảo
Li Y. Acc Chem Res, 2012, 45: 723–733
Lin Y, Zhan X. Acc Chem Res, 2016, 49: 175–183
Ostroverkhova O. Chem Rev, 2016, 116: 13279–13412
van Franeker JJ, Turbiez M, Li W, Wienk MM, Janssen RAJ. Nat Commun, 2015, 6: 6229–6236
Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip HL, Peng X, Cao Y, Chen Y. Nat Photon, 2016, 11: 85–90
Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027–15034
Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z. Nat Commun, 2016, 7: 13740–13747
Zhong Y, Trinh MT, Chen R, Wang W, Khlyabich PP, Kumar B, Xu Q, Nam CY, Sfeir MY, Black C, Steigerwald ML, Loo YL, Xiao S, Ng F, Zhu XY, Nuckolls C. J Am Chem Soc, 2014, 136: 15215–15221
Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336–1343
Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144–1700150
Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423–9429
Cui Y, Yang C, Yao H, Zhu J, Wang Y, Jia G, Gao F, Hou J. Adv Mater, 2017, 29: 1703080–1703086
Zhu J, Ke Z, Zhang Q, Wang J, Dai S, Wu Y, Xu Y, Lin Y, Ma W, You W, Zhan X. Adv Mater, 2017, 30: 1704713–1704719
Jia B, Dai S, Ke Z, Yan C, Ma W, Zhan X. Chem Mater, 2018, 30: 239–245
Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30: 1707150–1707156
Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447–3507
Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307–1313
Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151
Li S, Ye L, Zhao W, Zhang S, Ade H, Hou J. Adv Energy Mater, 2017, 7: 1700183–1700192
Luo Z, Bin H, Liu T, Zhang ZG, Yang Y, Zhong C, Qiu B, Li G, Gao W, Xie D, Wu K, Sun Y, Liu F, Li Y, Yang C. Adv Mater, 2018, 30: 1706124
Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128
Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J. J Am Chem Soc, 2018, 140: 7159–7167
Wan J, Xu X, Zhang G, Li Y, Feng K, Peng Q. Energy Environ Sci, 2017, 10: 1739–1745
Zhan C, Zhang X, Yao J. RSC Adv, 2015, 5: 93002–93026
Yang L, Zhang S, He C, Zhang J, Yang Y, Zhu J, Cui Y, Zhao W, Zhang H, Zhang Y, Wei Z, Hou J. Chem Mater, 2018, 30: 2129–2134
Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3: 952–959
Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868–1800874
Kwon OK, Park JH, Kim DW, Park SK, Park SY. Adv Mater, 2015, 27: 1951–1956
Li H, Fang J, Zhang J, Zhou R, Wu Q, Deng D, Abdullah Adil M, Lu K, Guo X, Wei Z. Mater Chem Front, 2018, 2: 143–148
Badgujar S, Song CE, Oh S, Shin WS, Moon SJ, Lee JC, Jung IH, Lee SK. J Mater Chem A, 2016, 4: 16335–16340
Yang L, Zhang S, He C, Zhang J, Yao H, Yang Y, Zhang Y, Zhao W, Hou J. J Am Chem Soc, 2017, 139: 1958–1966
Qiu B, Xue L, Yang Y, Bin H, Zhang Y, Zhang C, Xiao M, Park K, Morrison W, Zhang ZG, Li Y. Chem Mater, 2017, 29: 7543–7553
Zhang M, Guo X, Zhang S, Hou J. Adv Mater, 2013, 26: 1118–1123
Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537
Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J. Sci China Chem, 2018, 61: 1328–1337
Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su CJ, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. J Am Chem Soc, 2016, 138: 2973–2976
Bin H, Yao J, Yang Y, Angunawela I, Sun C, Gao L, Ye L, Qiu B, Xue L, Zhu C, Yang C, Zhang ZG, Ade H, Li Y. Adv Mater, 2018, 30: 1706361–1706367
Wang Y, Chang M, Kan B, Wan X, Li C, Chen Y. ACS Appl Energy Mater, 2018, 1: 2150–2156
Li H, Wu Q, Zhou R, Shi Y, Yang C, Zhang Y, Zhang J, Zou W, Deng D, Lu K, Wei Z. Adv Energy Mater, 2019, 9: 1803175
Adil MA, Zhang J, Deng D, Wang Z, Yang Y, Wu Q, Wei Z. ACS Appl Mater Interfaces, 2018, 10: 31526–31534