Fluorination as a Possible Method of Increasing Critical Temperature of Cuprate HTSC

Bulletin of the Lebedev Physics Institute - Tập 50 - Trang 218-223 - 2023
A. N. Lykov1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

A method for searching and synthesizing new HTSC with higher critical temperatures (Tc) is proposed. It is assumed that an increase in Tc in cuprate superconductors requires not only to increase the number of CuO2 planes in superconducting layers, but also to add fluorine anions to Ca or Y planes. Possible crystal structures and chemical formulas of compounds with higher critical temperatures are proposed.

Tài liệu tham khảo

Bednorz, J.G. and Müller, K.A., Possible high T c superconductivity in the Ba–La–Cu–O system, Z. Phys. B, 1986, vol. 64, pp. 189–193. https://doi.org/10.1007/BF01303701 Drozdov, A.P., Eremets, M.I., Troyan, I.A., et al., Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature, 2015, vol. 525, pp. 73–76. https://doi.org/10.1038/nature14964 Eremets, M.I. and Drozdov, A.P., High-temperature conventional superconductivity, Phys.-Usp., 2016, vol. 59, no. 11, p. 1154. https://doi.org/10.3367/UFNr.2016.09.037921 Drozdov, A.P., Kong, P.P., Minkov, V.S., et al., Superconductivity at 250 K in lanthanum hydride under high pressures, Nature, 2019, vol. 569, pp. 528–531. https://doi.org/10.1038/s41586-019-1201-8 Ashcroft, N.W., Hydrogen dominant metallic alloys: High temperature superconductors?, Phys. Rev. Lett., 2004, vol. 92, p. 187002. https://doi.org/10.1103/PhysRevLett.92.187002 Pervakov, K.S., Kulikova, L.F., Tsvetkov, A.Yu., and Vlasenko, V.A., Novel iron-based superconductor Ca0.5Sm0.5FeAsF, Bull. Lebedev Phys. Inst., 2022, vol. 49, pp. 242–246. https://doi.org/10.3103/S106833562208005X McMillan, M.L., Transition temperature of strong-coupled superconductors, Phys. Rev., 1968, vol. 167, p. 331. https://doi.org/10.1103/PhysRev.167.331 Gor’kov, L.P. and Eliashberg, G.M., Extension of the equations of the Ginzburg—Landau theory for nonstationary problems to the case of alloys with paramagnetic impurities, Zh. Eksp. Teor. Fiz., 1968, vol. 54. Ginzburg, V.L. and Kirzhnits, D.A., High-Temperature Superconductivity, New York: Springer, 1982. Dagotto, E., Correlated electrons in high-temperature superconductors, Rev. Mod. Phys., 1994, vol. 66, p. 763. https://doi.org/10.1103/RevModPhys.66.763 Lee, P.L., Nagaosa, N., and Wen, X.G., Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys., 2006, vol. 78, p. 17. https://doi.org/10.1103/RevModPhys.78.17 Scott, B.A., Suard, E.Y., Tsuei, C.C., Mitzi, D.B., McGuire, T.R., Chen, B.-H., and Walkr, D., Layer dependence of the superconducting transition temperature of HgBa2Can – 1CunO2n + 2 + δ, Phys. C, 1994, vol. 230, p. 239. https://doi.org/10.1016/0921-4534(94)90835-4 Tanabe, K., Adachi, S., Moriwaki, Y., Nakanishi, K., Sugano, T., Tamura, T., Tatsuki, T., Tokiwa-Yamamoto, A., Tsukamoto, A., and Wu, X.-J., in Abstracts of Papers, Proc. of Int. Workshop on Superconductivity, Hawaii, USA, 1997, pp. 11–14. Ginzburg, V.L., Landau, L.D., et al., J. Exp. Theor. Phys., 1950, vol. 20, p. 1064. Lykov, A.N., Boundary conditions in Ginsburg–Landau theory and critical temperature of high-T c superconductors, Phys. Lett. A, 2008, vol. 372, pp. 4747–4749. Critical temperature of high-T c superconductors and boundary conditions in Ginsburg–Landau theory, Int. J. Mod. Phys. B, 2009, vol. 23, pp. 4269–4276. https://doi.org/10.1142/S0217979209063420https://doi.org/10.1016/j.physleta.2008.04.064 Bozovich, L., Logvenov, G., Verhoeven, M.A.J., Caputo, P., Goldobinand, E., and Geball, T.H., No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor, Nature, 2003, vol. 422, pp. 873–875. https://doi.org/10.1038/nature01544 Bednorz, J.G. and Müller, K.A., Perovskite-type oxides—The new approach to high-T c superconductivity, Rev. Mod. Phys., 1988, vol. 60, p. 585. https://doi.org/10.1103/RevModPhys.60.585 Simonin, J., Surface term in the superconductive Ginzburg–Landau free energy: Application to thin films, Phys. Rev. B, 1986, vol. 33, p. 7830. https://doi.org/10.1103/PhysRevB.33.7830 Lykov, A.N., On the possibility of the phonon mechanism of superconductivity in cuprate HTSC, Fiz. Tverdogo Tela, 2022, vol. 64, no. 11, pp. 1631–1637. https://doi.org/10.21883/FTT.2022.11.53313.276 De Gennes, P.G., Superconductivity of Metals and Alloys, CRC Press, 2018. Capponi, J.J., Chaillout, C., and Hemat, A.W., et al., Structure of the 100 K superconductor Ba2YCu3O7 between (5–300) K by neutron powder diffraction, Europhys. Lett., 1987, vol. 3, no. 12, p. 1301. https://doi.org/10.1209/0295-5075/3/12/009 Shveikin, G.P., Gubanov, V.A., Fotiev, A.A., Bazuev, G.V., and Evdokimov, A.A., Elektronnaya struktura i fiziko-khimicheskie svoistva vysokotemperaturnykh sverkhprovodnikov (Electronic Structure and Physicochemical Properties of High-Temperature Superconductors), Moscow: Nauka, 1990. Ovshinsky, S.R., Young, R.T., Allred, D.D., et al., Phys. Rev. Lett., 1987, vol. 58, p. 2579.