Fluorescent antibiotics for real-time tracking of pathogenic bacteria

Journal of Pharmaceutical Analysis - Tập 10 - Trang 444-451 - 2020
Lu Miao1, Weiwei Liu1,2, Qinglong Qiao1, Xiaolian Li2, Zhaochao Xu1
1CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
2State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China

Tài liệu tham khảo

Willyard, 2017, The drug-resistant bacteria that pose the greatest health threats, Nature, 543, 15, 10.1038/nature.2017.21550 Jones, 2008, Trends in emerging infectious diseases, Nature, 451, 990, 10.1038/nature06536 Alekshun, 2007, Molecular mechanisms of antibacterial multidrug resistance, Cell, 128, 1037, 10.1016/j.cell.2007.03.004 Piddock, 2016, Reflecting on the final report of the O’Neill review on antimicrobial resistance, Lancet Infect. Dis., 16, 767, 10.1016/S1473-3099(16)30127-X Payne, 2007, Drugs for bad bugs: confronting the challenges of antibacterial discovery, Nat. Rev. Drug Discov., 6, 29, 10.1038/nrd2201 Lu, 2008, Bacteria detection utilizing electrical conductivity, Biosens. Bioelectron., 23, 1856, 10.1016/j.bios.2008.03.005 Davies, 2013, Annual report of the chief medical officer, infection and the rise of antimicrobial resistance, Lancet, 381, 1606, 10.1016/S0140-6736(13)60604-2 El Chakhtoura, 2018, Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward ’molecularly targeted’ therapy, Expert Rev. Anti Infect. Ther., 16, 89, 10.1080/14787210.2018.1425139 Alekshun, 2007, Molecular mechanisms of antibacterial multidrug resistance, Cell, 128, 1037, 10.1016/j.cell.2007.03.004 Cama, 2019, Breaching the barrier: quantifying antibiotic permeability across gram-negative bacterial membranes, J. Mol. Biol., 431, 3531, 10.1016/j.jmb.2019.03.031 Benito-Pena, 2005, Development of a novel and automated fluorescent immunoassay for the analysis of beta-lactam antibiotics, J. Agric. Food Chem., 53, 6635, 10.1021/jf0511502 Escobedo, 2012, Live cell imaging of a fluorescent gentamicin conjugate, Nat. Prod. Commun., 7, 317 Vashist, 2011, Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant acinetobacter baumannii, Indian J. Med. Res., 133, 332 Gallagher, 2010, A trimethoprim-based chemical tag for live cell two-photon imaging, Chembiochem, 11, 782, 10.1002/cbic.200900731 Jarzembowski, 2009, Heterogeneity of methicillin-resistant staphylococcus aureus strains (MRSA) characterized by flow cytometry, Curr. Microbiol., 59, 78, 10.1007/s00284-009-9395-x Jarzembowski, 2008, Flow cytometry as a rapid test for detection of penicillin resistance directly in bacterial cells in enterococcus faecalis and staphylococcus aureus, Curr. Microbiol., 57, 167, 10.1007/s00284-008-9179-8 Stone, 2018, Fluorescent antibiotics: new research tools to fight antibiotic resistance, Trends Biotechnol., 36, 523, 10.1016/j.tibtech.2018.01.004 Dubuy, 1964, Tetracycline fluorescence in permeability studies of membranes around intracellular parasites, Science, 145, 163, 10.1126/science.145.3628.163 Horvath, 1996, Fluorescence measurement of tetracycline in model fermentation media samples containing streptomyces aureofaciens cell mass, Appl. Spectrosc., 50, 327, 10.1366/0003702963906267 Crissman, 1978, Detailed studies on the application of 3 fluorescent antibiotics for DNA staining in flow cytometry, Stain Technol., 53, 321, 10.3109/10520297809111954 Crissman, 1990, Specific staining of DNA with the fluorescent antibiotics, mithramycin, chromomycin, and olivomycin, Trends Cell Biol., 33, 97 Saunders, 1990, Flow cytometric competitive-binding assay for determination of actinomycin-d concentrations, Cytometry, 11, 311, 10.1002/cyto.990110213 Mikhailova, 1991, Use of the DNA-specific fluorochrome olivomycin for cell culture studies, Tsitol. Genet., 25, 15 Vekshin, 2016, Nucleotide carriers for anti-tumour actinomycin antibiotics, J. Biochem., 159, 59, 10.1093/jb/mvv075 Gupta, 2019, Combatting antibiotic-resistant bacteria using nanomaterials, Chem. Soc. Rev., 48, 415, 10.1039/C7CS00748E Dik, 2018, Cell-wall recycling of the gram-negative bacteria and the nexus to antibiotic resistance, Chem. Rev., 118, 5952, 10.1021/acs.chemrev.8b00277 Breukink, 2006, Lipid II as a target for antibiotics, Nat. Rev. Drug Discov., 5, 321, 10.1038/nrd2004 Velkov, 2013, Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics, Future Microbiol., 8, 711, 10.2217/fmb.13.39 Shapiro, 2016, Investigation of beta-lactam antibacterial drugs, beta-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review, Methods Appl. Fluoresc., 4, 10.1088/2050-6120/4/2/024002 Macheboeuf, 2006, Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes, FEMS Microbiol. Rev., 30, 673, 10.1111/j.1574-6976.2006.00024.x Vollmer, 2008, Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli, Biochim. Biophys. Acta, 1778, 1714, 10.1016/j.bbamem.2007.06.007 Sauvage, 2008, The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis, Fems. Microbiol. Revi., 32, 234, 10.1111/j.1574-6976.2008.00105.x Ropy, 2015, Role of pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, beta-lactam resistance, and peptidoglycan structure, Antimicrob. Agents Chemother., 59, 3925, 10.1128/AAC.05150-14 Moisan, 2010, Binding of ceftaroline to penicillin-binding proteins of staphylococcus aureus and Streptococcus pneumoniae, J. Antimicrob. Chemother., 65, 713, 10.1093/jac/dkp503 Clausell, 2006, Membrane association and contact formation by a synthetic analogue of polymyxin B and its fluorescent derivatives, J. Phys. Chem. B, 110, 4465, 10.1021/jp0551972 Vince, 1976, Binding of n-substituted erythromycylamines to ribosomes, Antimicrob. Agents Chemother., 9, 131, 10.1128/AAC.9.1.131 Calloway, 2007, Optimized fluorescent trimethoprim derivatives for in vivo protein labeling, Chembiochem, 8, 767, 10.1002/cbic.200600414 Haugland, 2005 van Oosten, 2013, Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin, Nat. Commun., 4, 2584, 10.1038/ncomms3584 Mao, 2017, Specific detection of extended-spectrum beta-Lactamase activities with a ratiometric fluorescent Probe, Chembiochem, 18, 1990, 10.1002/cbic.201700447 Chen, 2015, Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy, Mol. Pharm., 12, 2505, 10.1021/acs.molpharmaceut.5b00053 Tiyanont, 2006, Imaging peptidoglycan biosynthesis in bacillus subtilis with fluorescent antibiotics, P. Nati. Acad. Sci. USA, 103, 11033, 10.1073/pnas.0600829103 Yun, 2015, Cellular uptake and localization of polymyxins in renal tubular cells using rationally designed fluorescent probes, Antimicrob. Agents Chemother., 59, 7489, 10.1128/AAC.01216-15 Yun, 2017, Design and evaluation of novel polymyxin fluorescent probes, Sensors, 17, 2598, 10.3390/s17112598 Phetsang, 2014, An azido-oxazolidinone antibiotic for live bacterial cell imaging and generation of antibiotic variants, Bioorg. Med. Chem., 22, 4490, 10.1016/j.bmc.2014.05.054 Stone, 2019, Fluoroquinolone-derived fluorescent probes for studies of bacterial penetration and efflux, MedChemComm, 10, 901, 10.1039/C9MD00124G Phetsang, 2016, Fluorescent trimethoprim conjugate probes to assess drug accumulation in wild type and mutant escherichia coli, ACS Infect. Dis., 2, 688, 10.1021/acsinfecdis.6b00080 Soon, 2011, Design, synthesis, and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions, Anal. Biochem., 409, 273, 10.1016/j.ab.2010.10.033 Kocaoglu, 2016, Progress and prospects for small-molecule probes of bacterial imaging, Nat. Chem. Biol., 12, 472, 10.1038/nchembio.2109 Long, 2019, A self-assembly/disassembly two-photo ratiometric fluorogenic probe for bacteria imaging, Chin. Chem. Lett., 30, 573, 10.1016/j.cclet.2018.11.031 Chan, 2012, Reaction-based small-molecule fluorescent probes for chemoselective bioimaging, Nat. Chem., 4, 973, 10.1038/nchem.1500 Li, 2019, Synthesis and application of near-infrared substituted rhodamines, Chin. Chem. Lett., 30, 1682, 10.1016/j.cclet.2019.06.036 Daniel, 2003, Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell, Cell, 113, 767, 10.1016/S0092-8674(03)00421-5 Wang, 2017, Selective imaging of Gram-negative and Gram-positive microbiotas in the mouse Gut, Biochemistry, 56, 3889, 10.1021/acs.biochem.7b00539 Matijasic, 2012, Fluorescently labeled macrolides as a tool for monitoring cellular and tissue distribution of azithromycin, Pharmacol. Res., 66, 332, 10.1016/j.phrs.2012.06.001 Pogliano, 2012, Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins, J. Bacteriol., 194, 4494, 10.1128/JB.00011-12 Wang, 2018, Antibiotics-based fluorescent probes for selective labeling of Gram-negative and Gram-positive bacteria in living microbiotas, Sci. China Chem., 61, 792, 10.1007/s11426-018-9236-5 Koch, 1996, What size should a bacterium be? A question of scale, Annu. Rev. Microbiol., 50, 317, 10.1146/annurev.micro.50.1.317 Huang, 2009, Super-resolution fluorescence microscopy, Annu. Rev. Biochem., 78, 993, 10.1146/annurev.biochem.77.061906.092014 Gao, 2012, Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens, Cell, 151, 1370, 10.1016/j.cell.2012.10.008 Benson, 2019, SCOTfluors : Small, conjugatable,orthogonal, and tunable fluorophores for in vivo imaging of cell metabolism, Angew. Chem. Int. Ed. Engl., 58, 6911, 10.1002/anie.201900465 Deng, 2019, Heteroatom-substituted rhodamine dyes: structure and spectroscopic properties, Chin, Chem. Lett., 30, 1667 Zhao, 1999, BOCILLIN FL, A sensitive and commercially available reagent for detection of penicillin-binding proteins, Antimicrob. Agents Chemother., 43, 1124, 10.1128/AAC.43.5.1124 Zhao, 1999, Penicillin-binding protein 2a of streptococcus pneumoniae: expression in escherichia coli and purification and refolding of inclusion bodies into a soluble and enzymatically active enzyme, Protein Expres, Purif, 16, 331, 10.1006/prep.1999.1080 Gee, 2001, Fluorescent bocillins: synthesis and application in the detection of penicillin-binding proteins, Electrophoresis, 22, 960, 10.1002/1522-2683()22:5<960::AID-ELPS960>3.0.CO;2-9 Moya, 2012, Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities, Antimicrob. Agents Chemother., 56, 4771, 10.1128/AAC.00680-12 Maurer, 2012, Mutations in streptococcus pneumoniae penicillin-binding protein 2x: importance of the c-terminal penicillin-binding protein and serine/threonine kinase-associateddomains for beta-lactam binding, Microb. Drug Resist., 18, 314, 10.1089/mdr.2012.0022 Shapiro, 2013, Continuous fluorescence anisotropy-based assay of BOCILLIN FL penicillin reaction with penicillin binding protein 3, Anal. Biochem., 43, 37, 10.1016/j.ab.2013.04.009 Gonzalez-Leiza, 2011, AmpH, A bifunctional ddendopeptidase and dd-carboxypeptidase of escherichia coli, J. Bacteriol., 193, 6887, 10.1128/JB.05764-11 Rahman, 2012, Penicillin-binding protein of ehrlichia chaffeensis: cytokine induction through MyD88-dependent pathway, J. Infect. Dis., 206, 110, 10.1093/infdis/jis313 Lemaire, 2009, Activities of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages and keratinocytes) forms of methicillin-susceptible and methicillin-resistant staphylococcus aureus, Antimicrob. Agents Chemother., 53, 2289, 10.1128/AAC.01135-08 Fedarovich, 2012, High-throughput screening for novel inhibitors of neisseria gonorrhoeae penicillin-binding protein 2, PloS One, 7, 10.1371/journal.pone.0044918 Dzhekieva, 2012, Inhibition of bacterial DD-peptidases (Penicillin-Binding proteins) in membranes and in vivo by peptidoglycan-mimetic boronic acids, Biochemistry, 51, 2804, 10.1021/bi300148v June, 2014, A fluorescent carbapenem for structure function studies of penicillin-binding proteins, beta-lactamases, and beta-lactam sensors, Anal. Biochem., 463, 70, 10.1016/j.ab.2014.07.012 Kocaoglu, 2015, Profiling of beta-lactam selectivity for penicillin-binding proteins in streptococcus pneumoniae D39, Antimicrob. Agents Chemother., 59, 3548, 10.1128/AAC.05142-14 Kocaoglu, 2012, Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division, ACS Chem. Biol., 7, 1746, 10.1021/cb300329r Bunschoten, 2013, Development and prospects of dedicated tracers for the molecular imaging of bacterial infections, Bioconjugate Chem., 24, 1971, 10.1021/bc4003037 Zhou, 2018, New NIR-II dyes without a benzobisthiadiazole core, Chin. Chem. Lett., 29, 1425, 10.1016/j.cclet.2018.08.009 Xu, 2018, Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging, Chin. Chem. Lett., 29, 1436, 10.1016/j.cclet.2017.12.020 Hong, 2017, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng., 1, 10.1038/s41551-016-0010 Chang, 2019, Near-infrared dyes, Nanomaterials and proteins, Chin. Chem. Lett., 30, 10.1016/j.cclet.2019.08.034 Kong, 2010, Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice, P. Nati. Acad. Sci. USA, 107, 12239, 10.1073/pnas.1000643107 Xie, 2012, Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe, Nat. Chem., 4, 802, 10.1038/nchem.1435 Cheng, 2014, Fluorogenic probes with substitutions at the 2 and 7 Positions of cephalosporin are highly BlaC-specific for rapid mycobacterium tuberculosis detection, Angew. Chem. Int. Ed. Engl., 53, 9360, 10.1002/anie.201405243 Zlokarnik, 1998, Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter, Science, 279, 84, 10.1126/science.279.5347.84 Rukavishnikov, 2011, Fluorogenic cephalosporin substrates for beta-lactamase TEM-1, Anal. Biochem., 419, 9, 10.1016/j.ab.2011.07.020 Zhang, 2012, Ratiometric fluorescence detection of pathogenic bacteria resistant to broad-spectrum beta-lactam antibiotics, Angew. Chem. Int. Ed. Engl., 51, 1865, 10.1002/anie.201107810