Fluorescent antibiotics for real-time tracking of pathogenic bacteria
Tài liệu tham khảo
Willyard, 2017, The drug-resistant bacteria that pose the greatest health threats, Nature, 543, 15, 10.1038/nature.2017.21550
Jones, 2008, Trends in emerging infectious diseases, Nature, 451, 990, 10.1038/nature06536
Alekshun, 2007, Molecular mechanisms of antibacterial multidrug resistance, Cell, 128, 1037, 10.1016/j.cell.2007.03.004
Piddock, 2016, Reflecting on the final report of the O’Neill review on antimicrobial resistance, Lancet Infect. Dis., 16, 767, 10.1016/S1473-3099(16)30127-X
Payne, 2007, Drugs for bad bugs: confronting the challenges of antibacterial discovery, Nat. Rev. Drug Discov., 6, 29, 10.1038/nrd2201
Lu, 2008, Bacteria detection utilizing electrical conductivity, Biosens. Bioelectron., 23, 1856, 10.1016/j.bios.2008.03.005
Davies, 2013, Annual report of the chief medical officer, infection and the rise of antimicrobial resistance, Lancet, 381, 1606, 10.1016/S0140-6736(13)60604-2
El Chakhtoura, 2018, Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward ’molecularly targeted’ therapy, Expert Rev. Anti Infect. Ther., 16, 89, 10.1080/14787210.2018.1425139
Alekshun, 2007, Molecular mechanisms of antibacterial multidrug resistance, Cell, 128, 1037, 10.1016/j.cell.2007.03.004
Cama, 2019, Breaching the barrier: quantifying antibiotic permeability across gram-negative bacterial membranes, J. Mol. Biol., 431, 3531, 10.1016/j.jmb.2019.03.031
Benito-Pena, 2005, Development of a novel and automated fluorescent immunoassay for the analysis of beta-lactam antibiotics, J. Agric. Food Chem., 53, 6635, 10.1021/jf0511502
Escobedo, 2012, Live cell imaging of a fluorescent gentamicin conjugate, Nat. Prod. Commun., 7, 317
Vashist, 2011, Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant acinetobacter baumannii, Indian J. Med. Res., 133, 332
Gallagher, 2010, A trimethoprim-based chemical tag for live cell two-photon imaging, Chembiochem, 11, 782, 10.1002/cbic.200900731
Jarzembowski, 2009, Heterogeneity of methicillin-resistant staphylococcus aureus strains (MRSA) characterized by flow cytometry, Curr. Microbiol., 59, 78, 10.1007/s00284-009-9395-x
Jarzembowski, 2008, Flow cytometry as a rapid test for detection of penicillin resistance directly in bacterial cells in enterococcus faecalis and staphylococcus aureus, Curr. Microbiol., 57, 167, 10.1007/s00284-008-9179-8
Stone, 2018, Fluorescent antibiotics: new research tools to fight antibiotic resistance, Trends Biotechnol., 36, 523, 10.1016/j.tibtech.2018.01.004
Dubuy, 1964, Tetracycline fluorescence in permeability studies of membranes around intracellular parasites, Science, 145, 163, 10.1126/science.145.3628.163
Horvath, 1996, Fluorescence measurement of tetracycline in model fermentation media samples containing streptomyces aureofaciens cell mass, Appl. Spectrosc., 50, 327, 10.1366/0003702963906267
Crissman, 1978, Detailed studies on the application of 3 fluorescent antibiotics for DNA staining in flow cytometry, Stain Technol., 53, 321, 10.3109/10520297809111954
Crissman, 1990, Specific staining of DNA with the fluorescent antibiotics, mithramycin, chromomycin, and olivomycin, Trends Cell Biol., 33, 97
Saunders, 1990, Flow cytometric competitive-binding assay for determination of actinomycin-d concentrations, Cytometry, 11, 311, 10.1002/cyto.990110213
Mikhailova, 1991, Use of the DNA-specific fluorochrome olivomycin for cell culture studies, Tsitol. Genet., 25, 15
Vekshin, 2016, Nucleotide carriers for anti-tumour actinomycin antibiotics, J. Biochem., 159, 59, 10.1093/jb/mvv075
Gupta, 2019, Combatting antibiotic-resistant bacteria using nanomaterials, Chem. Soc. Rev., 48, 415, 10.1039/C7CS00748E
Dik, 2018, Cell-wall recycling of the gram-negative bacteria and the nexus to antibiotic resistance, Chem. Rev., 118, 5952, 10.1021/acs.chemrev.8b00277
Breukink, 2006, Lipid II as a target for antibiotics, Nat. Rev. Drug Discov., 5, 321, 10.1038/nrd2004
Velkov, 2013, Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics, Future Microbiol., 8, 711, 10.2217/fmb.13.39
Shapiro, 2016, Investigation of beta-lactam antibacterial drugs, beta-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review, Methods Appl. Fluoresc., 4, 10.1088/2050-6120/4/2/024002
Macheboeuf, 2006, Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes, FEMS Microbiol. Rev., 30, 673, 10.1111/j.1574-6976.2006.00024.x
Vollmer, 2008, Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli, Biochim. Biophys. Acta, 1778, 1714, 10.1016/j.bbamem.2007.06.007
Sauvage, 2008, The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis, Fems. Microbiol. Revi., 32, 234, 10.1111/j.1574-6976.2008.00105.x
Ropy, 2015, Role of pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, beta-lactam resistance, and peptidoglycan structure, Antimicrob. Agents Chemother., 59, 3925, 10.1128/AAC.05150-14
Moisan, 2010, Binding of ceftaroline to penicillin-binding proteins of staphylococcus aureus and Streptococcus pneumoniae, J. Antimicrob. Chemother., 65, 713, 10.1093/jac/dkp503
Clausell, 2006, Membrane association and contact formation by a synthetic analogue of polymyxin B and its fluorescent derivatives, J. Phys. Chem. B, 110, 4465, 10.1021/jp0551972
Vince, 1976, Binding of n-substituted erythromycylamines to ribosomes, Antimicrob. Agents Chemother., 9, 131, 10.1128/AAC.9.1.131
Calloway, 2007, Optimized fluorescent trimethoprim derivatives for in vivo protein labeling, Chembiochem, 8, 767, 10.1002/cbic.200600414
Haugland, 2005
van Oosten, 2013, Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin, Nat. Commun., 4, 2584, 10.1038/ncomms3584
Mao, 2017, Specific detection of extended-spectrum beta-Lactamase activities with a ratiometric fluorescent Probe, Chembiochem, 18, 1990, 10.1002/cbic.201700447
Chen, 2015, Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy, Mol. Pharm., 12, 2505, 10.1021/acs.molpharmaceut.5b00053
Tiyanont, 2006, Imaging peptidoglycan biosynthesis in bacillus subtilis with fluorescent antibiotics, P. Nati. Acad. Sci. USA, 103, 11033, 10.1073/pnas.0600829103
Yun, 2015, Cellular uptake and localization of polymyxins in renal tubular cells using rationally designed fluorescent probes, Antimicrob. Agents Chemother., 59, 7489, 10.1128/AAC.01216-15
Yun, 2017, Design and evaluation of novel polymyxin fluorescent probes, Sensors, 17, 2598, 10.3390/s17112598
Phetsang, 2014, An azido-oxazolidinone antibiotic for live bacterial cell imaging and generation of antibiotic variants, Bioorg. Med. Chem., 22, 4490, 10.1016/j.bmc.2014.05.054
Stone, 2019, Fluoroquinolone-derived fluorescent probes for studies of bacterial penetration and efflux, MedChemComm, 10, 901, 10.1039/C9MD00124G
Phetsang, 2016, Fluorescent trimethoprim conjugate probes to assess drug accumulation in wild type and mutant escherichia coli, ACS Infect. Dis., 2, 688, 10.1021/acsinfecdis.6b00080
Soon, 2011, Design, synthesis, and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions, Anal. Biochem., 409, 273, 10.1016/j.ab.2010.10.033
Kocaoglu, 2016, Progress and prospects for small-molecule probes of bacterial imaging, Nat. Chem. Biol., 12, 472, 10.1038/nchembio.2109
Long, 2019, A self-assembly/disassembly two-photo ratiometric fluorogenic probe for bacteria imaging, Chin. Chem. Lett., 30, 573, 10.1016/j.cclet.2018.11.031
Chan, 2012, Reaction-based small-molecule fluorescent probes for chemoselective bioimaging, Nat. Chem., 4, 973, 10.1038/nchem.1500
Li, 2019, Synthesis and application of near-infrared substituted rhodamines, Chin. Chem. Lett., 30, 1682, 10.1016/j.cclet.2019.06.036
Daniel, 2003, Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell, Cell, 113, 767, 10.1016/S0092-8674(03)00421-5
Wang, 2017, Selective imaging of Gram-negative and Gram-positive microbiotas in the mouse Gut, Biochemistry, 56, 3889, 10.1021/acs.biochem.7b00539
Matijasic, 2012, Fluorescently labeled macrolides as a tool for monitoring cellular and tissue distribution of azithromycin, Pharmacol. Res., 66, 332, 10.1016/j.phrs.2012.06.001
Pogliano, 2012, Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins, J. Bacteriol., 194, 4494, 10.1128/JB.00011-12
Wang, 2018, Antibiotics-based fluorescent probes for selective labeling of Gram-negative and Gram-positive bacteria in living microbiotas, Sci. China Chem., 61, 792, 10.1007/s11426-018-9236-5
Koch, 1996, What size should a bacterium be? A question of scale, Annu. Rev. Microbiol., 50, 317, 10.1146/annurev.micro.50.1.317
Huang, 2009, Super-resolution fluorescence microscopy, Annu. Rev. Biochem., 78, 993, 10.1146/annurev.biochem.77.061906.092014
Gao, 2012, Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens, Cell, 151, 1370, 10.1016/j.cell.2012.10.008
Benson, 2019, SCOTfluors : Small, conjugatable,orthogonal, and tunable fluorophores for in vivo imaging of cell metabolism, Angew. Chem. Int. Ed. Engl., 58, 6911, 10.1002/anie.201900465
Deng, 2019, Heteroatom-substituted rhodamine dyes: structure and spectroscopic properties, Chin, Chem. Lett., 30, 1667
Zhao, 1999, BOCILLIN FL, A sensitive and commercially available reagent for detection of penicillin-binding proteins, Antimicrob. Agents Chemother., 43, 1124, 10.1128/AAC.43.5.1124
Zhao, 1999, Penicillin-binding protein 2a of streptococcus pneumoniae: expression in escherichia coli and purification and refolding of inclusion bodies into a soluble and enzymatically active enzyme, Protein Expres, Purif, 16, 331, 10.1006/prep.1999.1080
Gee, 2001, Fluorescent bocillins: synthesis and application in the detection of penicillin-binding proteins, Electrophoresis, 22, 960, 10.1002/1522-2683()22:5<960::AID-ELPS960>3.0.CO;2-9
Moya, 2012, Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities, Antimicrob. Agents Chemother., 56, 4771, 10.1128/AAC.00680-12
Maurer, 2012, Mutations in streptococcus pneumoniae penicillin-binding protein 2x: importance of the c-terminal penicillin-binding protein and serine/threonine kinase-associateddomains for beta-lactam binding, Microb. Drug Resist., 18, 314, 10.1089/mdr.2012.0022
Shapiro, 2013, Continuous fluorescence anisotropy-based assay of BOCILLIN FL penicillin reaction with penicillin binding protein 3, Anal. Biochem., 43, 37, 10.1016/j.ab.2013.04.009
Gonzalez-Leiza, 2011, AmpH, A bifunctional ddendopeptidase and dd-carboxypeptidase of escherichia coli, J. Bacteriol., 193, 6887, 10.1128/JB.05764-11
Rahman, 2012, Penicillin-binding protein of ehrlichia chaffeensis: cytokine induction through MyD88-dependent pathway, J. Infect. Dis., 206, 110, 10.1093/infdis/jis313
Lemaire, 2009, Activities of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages and keratinocytes) forms of methicillin-susceptible and methicillin-resistant staphylococcus aureus, Antimicrob. Agents Chemother., 53, 2289, 10.1128/AAC.01135-08
Fedarovich, 2012, High-throughput screening for novel inhibitors of neisseria gonorrhoeae penicillin-binding protein 2, PloS One, 7, 10.1371/journal.pone.0044918
Dzhekieva, 2012, Inhibition of bacterial DD-peptidases (Penicillin-Binding proteins) in membranes and in vivo by peptidoglycan-mimetic boronic acids, Biochemistry, 51, 2804, 10.1021/bi300148v
June, 2014, A fluorescent carbapenem for structure function studies of penicillin-binding proteins, beta-lactamases, and beta-lactam sensors, Anal. Biochem., 463, 70, 10.1016/j.ab.2014.07.012
Kocaoglu, 2015, Profiling of beta-lactam selectivity for penicillin-binding proteins in streptococcus pneumoniae D39, Antimicrob. Agents Chemother., 59, 3548, 10.1128/AAC.05142-14
Kocaoglu, 2012, Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division, ACS Chem. Biol., 7, 1746, 10.1021/cb300329r
Bunschoten, 2013, Development and prospects of dedicated tracers for the molecular imaging of bacterial infections, Bioconjugate Chem., 24, 1971, 10.1021/bc4003037
Zhou, 2018, New NIR-II dyes without a benzobisthiadiazole core, Chin. Chem. Lett., 29, 1425, 10.1016/j.cclet.2018.08.009
Xu, 2018, Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging, Chin. Chem. Lett., 29, 1436, 10.1016/j.cclet.2017.12.020
Hong, 2017, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng., 1, 10.1038/s41551-016-0010
Chang, 2019, Near-infrared dyes, Nanomaterials and proteins, Chin. Chem. Lett., 30, 10.1016/j.cclet.2019.08.034
Kong, 2010, Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice, P. Nati. Acad. Sci. USA, 107, 12239, 10.1073/pnas.1000643107
Xie, 2012, Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe, Nat. Chem., 4, 802, 10.1038/nchem.1435
Cheng, 2014, Fluorogenic probes with substitutions at the 2 and 7 Positions of cephalosporin are highly BlaC-specific for rapid mycobacterium tuberculosis detection, Angew. Chem. Int. Ed. Engl., 53, 9360, 10.1002/anie.201405243
Zlokarnik, 1998, Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter, Science, 279, 84, 10.1126/science.279.5347.84
Rukavishnikov, 2011, Fluorogenic cephalosporin substrates for beta-lactamase TEM-1, Anal. Biochem., 419, 9, 10.1016/j.ab.2011.07.020
Zhang, 2012, Ratiometric fluorescence detection of pathogenic bacteria resistant to broad-spectrum beta-lactam antibiotics, Angew. Chem. Int. Ed. Engl., 51, 1865, 10.1002/anie.201107810