Fluorescence nanoscopy by polarization modulation and polarization angle narrowing

Nature Methods - Tập 11 Số 5 - Trang 579-584 - 2014
Nour Hafi1, Matthias Grunwald2, Laura S van den Heuvel1, Timo Aspelmeier3, Jianhua Chen2, Marta Zagrebelsky4, Ole Mathis Schütte5, Claudia Steinem5, Martin Körte4, Axel Munk6, Peter Jomo Walla2
1Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Braunschweig, Germany
2Biomolecular Spectroscopy and Single-Molecule Detection Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
3Felix Bernstein Institute for Mathematical Statistics in Bioscience, Göttingen, Germany
4Division of Cellular Neurobiology, Zoological Institute, University of Braunschweig, Braunschweig, Germany
5Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
6Institute for Mathematical Stochastics, University of Göttingen, Göttingen, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hell, S.W. Microscopy and its focal switch. Nat. Methods 6, 24–32 (2009).

Bates, M., Huang, B. & Zhuang, X. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr. Opin. Chem. Biol. 12, 505–514 (2008).

Lippincott-Schwartz, J. & Manley, S. Putting super-resolution fluorescence microscopy to work. Nat. Methods 6, 21–23 (2009).

Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA 106, 22287–22292 (2009).

Chmyrov, A. et al. Nanoscopy with more than 100,000 'doughnuts'. Nat. Methods 10, 737–740 (2013).

Geisler, C. et al. Drift estimation for single marker switching based imaging schemes. Opt. Express 20, 7274–7289 (2012).

Hell, S.W. Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003).

Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19, 1599–1609 (2002).

Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

Marriott, G. et al. Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc. Natl. Acad. Sci. USA 105, 17789–17794 (2008).

Richards, C.I., Hsiang, J.-C. & Dickson, R.M. Synchronously amplified fluorescence image recovery (SAFIRe). J. Phys. Chem. B 114, 660–665 (2010).

Lakowicz, J.R. Principles of Fluorescence Spectroscopy 2nd edn. (Kluwer/Plenum, 1999).

Walla, P.J. Modern Biophysical Chemistry: Detection and Analysis of Biomolecules (Wiley, 2009).

Vicidomini, G. et al. Sharper low-power STED nanoscopy by time gating. Nat. Methods 8, 571–573 (2011).

Mirzov, O. et al. Polarization portraits of single multichromophoric systems: visualizing conformation and energy transfer. Small 5, 1877–1888 (2009).

Thomsson, D., Lin, H. & Scheblykin, I.G. Correlation analysis of fluorescence intensity and fluorescence anisotropy fluctuations in single-molecule spectroscopy of conjugated polymers. ChemPhysChem 11, 897–904 (2010).

Hein, B., Willig, K.I. & Hell, S.W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008).

Harris, K.M. & Kater, S.B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).

Urban, N.T., Willig, K.I., Hell, S.W. & Nägerl, U.V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).

Harris, K.M., Jensen, F.E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

Deller, T. et al. Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc. Natl. Acad. Sci. USA 100, 10494–10499 (2003).

Izeddin, I. et al. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6, e15611 (2011).

Richardson, W.H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972).

Lucy, L.B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–749 (1974).

Vardi, Y., Shepp, L.A. & Kaufman, L. A statistical model for positron emission tomography. J. Am. Stat. Assoc. 80, 8–20 (1985).

Bertero, M. & Boccacci, P. Introduction to Inverse Problems in Imaging (Taylor & Francis, 1998).

Bissantz, N., Mair, B.A. & Munk, A. A statistical stopping rule for MLEM reconstructions in PET. in IEEE Nucl. Sci. Symp. Conf. Rec. 4198–4200 (IEEE, 2008).

Munk, A. & Pricop, M. in Statistical Modelling and Regression Structures (eds. Kneib, T. & Tutz, G.) 431–448 (Physica, 2010).

Testa, I. et al. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys. J. 99, 2686–2694 (2010).

Stoppini, L., Buchs, P.-A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Curr. Protoc. Mol. Biol. 92, 14.20 (2010).