Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom–Hashtjin metallogenic belt, NW Iran
Tài liệu tham khảo
Aghazadeh, 2015, Petrogenesis and U-Pb SHRIMP dating of tarom plutons, J. Geosci., 24, 3
Aghazadeh, 2011, Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geol. Mag., 148, 980, 10.1017/S0016756811000380
Albinson, 2001, Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data, 1
Albinson, 1988, Geologic reconstruction of paleosurfaces in the Sombrerete, Colorado, and Fresnillo districts, Zacatecas State, Mexico, Econ. Geol., 83, 1647, 10.2113/gsecongeo.83.8.1647
Alderton, 2000, The nature and genesis of gold-silver-tellurium mineralization in the Metaliferi Mountains of western Romania, Econ. Geol., 95, 495
Amini, 2001, Geological map of Tarom, Sheet no. 5763, Scale 1:100000, 1 sheet, Geol. Surv. Iran
Asiabanha, 2012, Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran, Lithos, 148, 98, 10.1016/j.lithos.2012.05.014
Azizi, 2008, Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. J. Geod., 45, 178, 10.1016/j.jog.2007.11.001
Azizi, 2009, Genesis of Tertiary magnetite-apatite deposits, southeast of Zanjan, Iran, Res. Geol., 59, 330, 10.1111/j.1751-3928.2009.00101.x
Bakker, 2003, Package FLUIDS 1, Computer programs for analysis of fluid inclusions data and for modeling bulk fluid properties, Chem. Geol., 194, 3, 10.1016/S0009-2541(02)00268-1
Barton, 1977, Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: part III. Progress toward interpretation of the chemistry of the ore-forming environment, Econ. Geol., 72, 1, 10.2113/gsecongeo.72.1.1
Berger, 1983, Conceptual models of epithermal metal deposits. Shanks, Cameron Volume on Unconventional Mineral Deposits, Am. Inst. Min. Metall. and Pet. Eng., 191
Bodnar, 1985, Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O–NaCl to 1000 °C and 1500 bars, Geochim. Cosmochim. Acta, 49, 1861, 10.1016/0016-7037(85)90081-X
Bodnar, 1985, Fluid-inclusion systematics in epithermal systems, Rev. Econ. Geol., 2, 73
Bouzari, 2006, Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado Hypogene Protore, I Region, northern Chile, Econ. Geol., 101, 95, 10.2113/gsecongeo.101.1.95
Burnham, 1979, Chapter 3: magmas and hydrothermal fluids, 71
Camprubi, 2007, Epithermal deposits in Mexico: update of current knowledge, and an empirical reclassification, Geol. Soc. Spec. Pup., 422, 377
Canet, 2011, A model of boiling for fluid inclusion studies: application to the Bolaños Ag–Au–Pb–Zn epithermal deposit, Western Mexico, J. Geochem. Expl., 110, 118, 10.1016/j.gexplo.2011.04.005
Castro, 2013, Late Eocene-Oligocene postcollisional monzonitic intrusions from the Alborz magmatic belt, NW Iran: an example of monzonite magma generation from a metasomatised mantle source, Lithos, 180–181, 109, 10.1016/j.lithos.2013.08.003
Chen, 2009, Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: implications for ore genesis, Ore Geol. Rev., 35, 245, 10.1016/j.oregeorev.2008.11.003
Chi, 2017, Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Miner. Deposita, 52, 211, 10.1007/s00126-016-0657-9
Çiçek, 2016, Origin and evolution of hydrothermal fluids in epithermal Pb-Zn-Cu ± Au ± Ag deposits at Koru and Tesbihdere mining districts, Çanakkale, Biga Peninsula, NW Turkey, Ore Geol. Rev., 78, 176, 10.1016/j.oregeorev.2016.03.020
Clayton, 1961, The use of oxygen isotopes in high-temperature geological thermometry, J. Geol., 69, 447, 10.1086/626760
Clayton, 1963, The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis, Geochim. Cosmochim. Acta, 27, 43, 10.1016/0016-7037(63)90071-1
Cole, 1986, The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: a preliminary assessment and possible implications for the formation of epithermal precious-metal ore deposits, J. Geochem. Explo., 25, 45, 10.1016/0375-6742(86)90007-5
Cooke, 2001, Epithermal Au–Ag–Te mineralization, Acupan, Baguio district, Philippines: Numerical simulations of mineral deposition, Econ. Geol., 96, 109
Cooke, 2000, Characteristics and genesis of epithermal gold deposits, Rev. Econ. Geol., 13, 221
Corral, 2017, Origin and evolution of mineralizing fluids and exploration of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama) from a fluid inclusion and stable isotope perspective, Ore Geol. Rev., 80, 947, 10.1016/j.oregeorev.2016.09.008
Davis, 1990, Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, and NaCl–CaCl2–H2O, Geochim. Cosmochim. Acta, 54, 591, 10.1016/0016-7037(90)90355-O
Drummond, 1985, Chemical evolution and mineral deposition in boiling hydrothermal processes in the light of studies in rock-buffered systems; I, iron-copper-zinc-lead sulfide solubility relations, Econ. Geol., 87, 1
Einaudi, 2003, Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments, 285
Esmaeli, 2015, Fluid inclusion and stable isotope study of the Khalyfehlou copper deposit, southeast Zanjan, Iran. Arab. J. Geosci., 8, 9625, 10.1007/s12517-015-1907-3
Fan, 2011, The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids, Int. Geol. Rev., 53, 25, 10.1080/00206810902875370
Faure, 1986, 589
Faure, 2003, δD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems: do values reflect those of original hydrothermal water?, Econ. Geol., 98, 657
Faure, 2002, The Hishikari Au–Ag epithermal deposit, Japan: oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids, Econ. Geol., 97, 481, 10.2113/gsecongeo.97.3.481
Federico, 2002, Magma-derived gas influx and water–rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy, Geochim. Cosmochim. Acta, 66, 963, 10.1016/S0016-7037(01)00813-4
Field, 1985, Light stable-isotope systematics in the epithermal environment, Rev. Econ. Geol., 2, 99
Fournier, 1985, The behavior of silica in hydrothermal solutions, Rev. Econ. Geol., 2, 45
Gemmell, 2004, 57
Gemmell, 1988, The Santo Niño silver-lead-zinc vein, Fresnillo, Zacatecas, Mexico: part I. Structure, vein stratigraphy, and mineralogy, Econ. Geol., 83, 1597, 10.2113/gsecongeo.83.8.1597
Ghasemi Siani, 2015, Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojeh epithermal gold mineralization, NW Iran, Open Geosci., 7, 207
Ghorbani, 2013, 569
Giggenbach, 1992, Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries, Econ. Geol., 87, 1927
Goldstein, 2003, Petrographic analysis of fluid inclusions, 9
Goldstein, 1994
Haas, 1971, The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, Econ. Geol., 66, 940, 10.2113/gsecongeo.66.6.940
Hall, 1988, Freezing point depression of NaCl–KCl–H2O solutions, Econ. Geol., 83, 197, 10.2113/gsecongeo.83.1.197
Hayba, 1997, Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: Part V. Epithermal mineralization from fluid mixing in the OH Vein, Econ. Geol., 92, 29, 10.2113/gsecongeo.92.1.29
Heald, 1987, Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types, Econ. Geol., 82, 1, 10.2113/gsecongeo.82.1.1
Hedenquist, 1998, Evolution of an intrusion-centered hydrothermal system: far southeast Lepanto porphyry and epithermal Cu–Au deposits, Philippines, Econ. Geol., 93, 373, 10.2113/gsecongeo.93.4.373
Hedenquist, 1998, Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu–Au deposits, Philippines, Econ. Geol., 93, 373, 10.2113/gsecongeo.93.4.373
Hedenquist, 2000, Exploration for epithermal gold deposits, Rev. Econ. Geol., 13, 245
Hedenquist, 1994, The role of magmas in the formation of hydrothermal ore deposits, Nature, 370, 519, 10.1038/370519a0
Hemley, 1986, Effect of pressure on ore mineral solubilities under hydrothermal conditions, Geol., 14, 377, 10.1130/0091-7613(1986)14<377:EOPOOM>2.0.CO;2
Hemley, 1992, Hydrothermal ore forming processes in the light of studies in rock-buffered system: I. Iron–copper–zinc–lead sulphide solubility reactions, Econ. Geol., 87, 1, 10.2113/gsecongeo.87.1.1
Henley, 2000, Underground fumaroles: “Excess heat” effects in vein formation, Econ. Geol., 95, 453
Hirayama, 1966, Geology of the Tarom district, western part (Zanjan area, north-west Iran), Geol. Surv. Iran, Rep., 8, 31 p
Hoefs, 2015
Hosseinzadeh, 2016, Khalifehlu deposit: high-sulfidation epithermal Cu-Au mineralization in the Tarom magmatic zone, north Khoramdareh, Sci. Quat. J. Geosci., 25, 179
Irannezhadi, 2007, Tertiary arc-related volcanism in Central Alborz Mountains, Geoph. Res., Abs., 9, 867
Izawa, 1990, The Hishikari gold deposit: High-grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan, J. Geochem. Expl., 36, 1, 10.1016/0375-6742(90)90050-K
Jamali, 2010, Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran, Int. Geol. Rev., 52, 608, 10.1080/00206810903416323
Jamali, 2015, Relationships between arc maturity and Cu–Mo–Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt, Ore Geol. Rev., 65, 487, 10.1016/j.oregeorev.2014.06.017
Jamali, 2012, Petrogenesis and tectono-magmatic setting of Meso-Cenozoic magmatism in Azerbaijan province, northwestern Iran, Pet., New Perspec. Appl. INTECH, Croatia, 39
Jebrak, 1997, Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution, Ore Geol. Rev., 12, 111, 10.1016/S0169-1368(97)00009-7
Jiang, 2018, Hydrothermal alteration, fluid inclusions and stable isotope characteristics of the Shaquanzi Fe–Cu deposit, Eastern Tianshan: implications for deposit type and metallogenesis, Ore Geol. Rev., 100, 385, 10.1016/j.oregeorev.2016.09.025
Jobson, 1994, Structural controls and genesis of epithermal gold-bearing breccias at the Lebong Tandai mine, Western Sumatra, Indonesia, J. Geochem. Expl., 50, 409, 10.1016/0375-6742(94)90034-5
John, 2001, Miocene and early Pliocene epithermal gold–silver deposits in the northern Great Basin, western USA: Characteristics, distribution, and relationship to magmatism, Econ. Geol., 96, 1827, 10.2113/gsecongeo.96.8.1827
John, 2003, Geological setting and genesis of the Mule Canyon low-sulfidation epithermal gold–silver deposit, north-central Nevada, Econ. Geol., 98, 425, 10.2113/gsecongeo.98.2.425
Klemm, 2007, Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu–Mo ore deposition from low-salinity magmatic fluids, Econ. Geol., 102, 1021, 10.2113/gsecongeo.102.6.1021
Kouhestani, 2018
Kouhestani, 2017, Mineralization and fluid evolution of epithermal base metal veins from the Aqkand deposit, NW Iran. N. Jb. Miner. Abh. (J. Min. Geochem.), 194, 139, 10.1127/njma/2017/0036
Kouhestani, 2015, Constraints on the ore fluids in the Chah Zard breccia-hosted epithermal Au-Ag deposit, Iran: fluid inclusions and stable isotope studies, Ore Geol. Rev., 65, 512, 10.1016/j.oregeorev.2013.06.003
Kouhestani, 2018, Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geol. Rev., 93, 1, 10.1016/j.oregeorev.2017.12.012
Kouhestani, 2018, Timing and genesis of ore formation in the Qarachilar Cu-Mo-Au deposit, Ahar-Arasbaran metallogenic zone, NW Iran: evidence from geology, fluid inclusions, O-S isotopes and Re–Os geochronology, Ore Geol. Rev., 102, 757, 10.1016/j.oregeorev.2018.10.007
Kouzmanov, 2003, Stable isotopic constrains on the origin of epithermal Cu-Au and related porphyry copper mineralizations in the southern Panagyurishte district, Srednogorie zone, Bulgaria, 1181
Lattanzi, 1991, Applications of fluid inclusions in the study and exploration of mineral deposits, Eur. J. Mineral., 3, 689, 10.1127/ejm/3/4/0689
Li, 2014, Geology and geochemistry of the Qiaoxiahala Fe–Cu–Au deposit, Junggar region, northwest China, Ore Geol. Rev., 57, 462, 10.1016/j.oregeorev.2013.08.003
Li, 2018, Geology, fluid inclusion, and stable isotope systematics of the Dongyang epithermal gold deposit, Fujian Province, southeast China: implications for ore genesis and mineral exploration, J. Geochem. Expl., 195, 16, 10.1016/j.gexplo.2018.02.009
Li, 2018, Genesis of the Ancun epithermal gold deposit, southeast China: evidence from fluid inclusion and stable isotope data, J. Geochem. Expl., 195, 157, 10.1016/j.gexplo.2018.01.016
Li, 2006, Calculation of sulfur isotope fractionation in sulfides, Geochim. Cosmochim. Acta, 70, 1789, 10.1016/j.gca.2005.12.015
Liu, 2014, Fluid inclusions and H-O–S–Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China, Ore Geol. Rev., 59, 83, 10.1016/j.oregeorev.2013.12.006
Liu, 2016, Geochemistry, geochronology, and fluid inclusion study of the Late Cretaceous Newton epithermal gold deposit, British Columbia. Can. J. Earth Sci., 53, 10, 10.1139/cjes-2015-0068
Méheut, 2007, Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first-principles density-functional theory, Geochim. Cosmochim. Acta, 71, 3170, 10.1016/j.gca.2007.04.012
Mehrabi, 2014, Investigation on intermediate-sulfidation epithermal mineralization at Gulojeh N.4 anomaly (north of Zanjan), using mineralogical, alteration, and fluid inclusion geochemistry data, J Econ. Geol., 6, 1
Mehrabi, 2016, Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran. Ore Geol. Rev., 78, 41, 10.1016/j.oregeorev.2016.03.016
Mehrabi, 2010, Investigation on mineralization and genetic model of Gulojeh Cu-Au vein deposit (north of Zanjan), using mineralogical, geochemical and fluid inclusion data, J. Sci., 35, 185
Mikaeili, 2018, The Shah-Ali-Beiglou Zn–Pb–Cu (Ag) deposit, Iran: an example of intermediate-sulfidation epithermal type mineralization, Min., 8, 148
Mohammadi Niaei, 2015, The Ay Qalasi deposit: an epithermal Pb–Zn (Ag) mineralization in the Urumieh-Dokhtar volcanic belt of northwestern, Iran. N. Jb. Miner. Abh. (J. Min. Geochem.), 192, 263, 10.1127/njma/2015/0284
Moncada, 2017, Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México. Ore Geol. Rev., 89, 143, 10.1016/j.oregeorev.2017.05.024
Moncada, 2012, Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: application to exploration, J. Geochem. Expl., 114, 20, 10.1016/j.gexplo.2011.12.001
Moritz, 2003, Controls on ore formation at high sulfidation Au–Cu Chelopech deposit, Bulgaria: Evidence from infrared fluid inclusion microthermometry of enargite and isotope systematics of barite, 1209
Moritz, 2016, Metallogeny of the Lesser Caucasus: from Arc Construction to Postcollision Evolution, Econ. Geol. Spec. Pub., 19, 57
Moritz, 2016, Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan, Gond. Res., 37, 465, 10.1016/j.gr.2015.10.009
Muntean, 2001, Porphyry-epithermal transition: Maricunga Belt, Northern Chile, Econ. Geol., 96, 743, 10.2113/gsecongeo.96.4.743
Nabatian, 2014, Petrogenesis of Tarom high-potassic granitoids in the Alborz-Azarbaijan belt, Iran: geochemical, U-Pb zircon and Sr–Nd–Pb isotopic constraints, Lithos, 184–187, 324, 10.1016/j.lithos.2013.11.002
Nabatian, 2016, Zircon U-Pb ages, geochemical and Sr–Nd–Pb–Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran, Lithos, 244, 43, 10.1016/j.lithos.2015.11.020
Naden, 2005, Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island, Greece. Geol., 33, 541
Ohmoto, 1972, Systematics of sulfur and carbon isotopes in hydrothermal ore deposits, Econ. Geol., 67, 551, 10.2113/gsecongeo.67.5.551
Ohmoto, 1979, Isotope of sulfur and carbon, 509
Ouyang, 2014, The nature and timing of ore formation in the Budunhua copper deposit, southern Great Xing'an Range: evidence from geology, fluid inclusions, and U-Pb and Re–Os geochronology, Ore Geol. Rev., 63, 238, 10.1016/j.oregeorev.2014.05.016
Pirajno, 2009, 1250
Prokofiev, 2010, Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia, Econ. Geol., 105, 395, 10.2113/gsecongeo.105.2.395
Qin, 2002, Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: epochs, features, tectonic linkage and exploration significance, Res. Geol., 52, 291, 10.1111/j.1751-3928.2002.tb00140.x
Rabiei, 2017, Hydrothermal rare earth element (Xenotime) mineralization at maw zone, athabasca basin, canada, and its relationship to unconformity-related uranium deposits, Econ. Geol., 112, 1483, 10.5382/econgeo.2017.4518
Ramboz, 1982, Fluid immiscibility in natural processes: use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility, Chem. Geol., 37, 29, 10.1016/0009-2541(82)90065-1
Rezeau, 2017, 30 Myr of Cenozoic magmatism along the Tethyan margin during Arabia-Eurasia accretionary orogenesis (Meghri–Ordubad pluton, southernmost Lesser Caucasus), Lithos, 288–289, 108, 10.1016/j.lithos.2017.07.007
Rezeau, 2016, Temporal and genetic link between incremental pluton assembly and pulsed porphyry Cu–Mo formation in accretionary orogens, Geol., 44, 627, 10.1130/G38088.1
Roedder, 1984, Fluid inclusions, Rev. Mineral., 12, 644 p
Roedder, 1980, Geologic pressure determinations from fluid inclusion studies, Annu. Rev. Earth Planet. Sci., 8, 263, 10.1146/annurev.ea.08.050180.001403
Rolland, 2009, Blueschists of the Amassia-Stepanavan Suture Zone (Armenia): linking Tethys subduction history from E Turkey to W Iran, Int. J. of Earth Sci., 98, 533, 10.1007/s00531-007-0286-8
Ronacher, 2000, Evidence for fluid phase separation in high-grade ore zones at the Porgera gold deposit, Papua New Guinea, Miner. Deposita, 35, 683, 10.1007/s001260050271
Rosso, 1995, Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2, Geochim. Cosmochim. Acta, 59, 3961, 10.1016/0016-7037(95)94441-H
Rusk, 2008, Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana, Econ. Geol., 103, 307, 10.2113/gsecongeo.103.2.307
Rye, 1993, Evolution of magmatic fluids in the epithermal environment: the stable isotope perspective, Econ. Geol., 88, 733, 10.2113/gsecongeo.88.3.733
Rye, 1974, Sulfur and carbon isotopes and ore genesis: a review, Econ. Geol., 69, 826, 10.2113/gsecongeo.69.6.826
Sabeva, 2017, Ore petrology, hydrothermal alteration, fluid inclusions, and sulfur stable isotopes of the Milin Kamak intermediate sulfidation epithermal Au-Ag deposit in Western Srednogorie, Bulgaria, Ore Geol. Rev., 88, 400, 10.1016/j.oregeorev.2017.05.013
Scott, 1998, Extreme boiling model for variable salinity of the Hokko low-sulfidation epithermal Au prospect, southwestern Hokkaido, Japan, Miner. Deposita, 33, 568, 10.1007/s001260050173
Seedorff, 2005, 251
Shepherd, 1985, 223
Sheppard, 1986, Characterization and isotopic variations in natural waters, Rev. Min. Geochem., 16, 165
Sherlock, 1995, Origin of the McLaughlin mine sheeted vein complex: metal zoning, fluid inclusion and isotopic evidence, Econ. Geol., 90, 2156, 10.2113/gsecongeo.90.8.2156
Siahcheshm, 2014, Hydrothermal evolution in the Maher-Abad porphyry Cu–Au deposit, SW Birjand, Eastern Iran: evidence from fluid inclusions, Ore Geol. Rev., 58, 1, 10.1016/j.oregeorev.2013.10.005
Sillitoe, 2010, Porphyry copper systems, Econ. Geol., 105, 3, 10.2113/gsecongeo.105.1.3
Sillitoe, 2003, Linkages between volcanotectonic settings, ore fluid compositions, and epithermal precious-metal deposits, Econ. Geol. Spec. Pub., 10, 315
Simmons, 1995, Magmatic contributions to low-sulfidation epithermal deposits, 455
Simmons, 2000, Origin of massive calcite veins in the Golden Cross low-sulfidation, epithermal Au–Ag deposit, New Zealand, Econ. Geol., 95, 99, 10.2113/gsecongeo.95.1.99
Simmons, 2006, Gold in magmatic hydrothermal solutions and the rapid formation of a Giant ore deposit, Science, 314, 288, 10.1126/science.1132866
Simmons, 2000, Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments, Econ. Geol., 95, 971, 10.2113/gsecongeo.95.5.971
Simmons, 1994, Origin of calcite in a boiling geothermal system, Am. J. Sci., 294, 361, 10.2475/ajs.294.3.361
Simmons, 2005, 485
Simon, 1999, Epithermal gold mineralization in an old volcanic arc: the Jacinto deposit, Camaguey district, Cuba, Econ. Geol., 94, 487, 10.2113/gsecongeo.94.4.487
Simpson, 2001, Hydrothermal alteration and hydrologic evolution of the Golden Cross epithermal Au–Ag deposit, New Zealand, Econ. Geol., 96, 773
Spycher, 1989, Evolution of a Broadlands-type epithermal ore fluid along alternative P-T paths: implications for the transport and deposition of base, precious, and volatile metals, Econ. Geol., 84, 328, 10.2113/gsecongeo.84.2.328
Takács, 2017, Ore mineralogy and fluid inclusion constraints on the temporal and spatial evolution of a high-sulfidation epithermal Cu-Au-Ag deposit in the recsk ore complex, Hungary, Econ. Geol., 112, 1461, 10.5382/econgeo.2017.4517
Taylor, 1974, The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Econ. Geol., 69, 843, 10.2113/gsecongeo.69.6.843
Taylor, 2009, 287
Thiersch, 1997, Epithermal mineralization and ore controls of the Shasta Au–Ag deposit, Toodoggone District, British Columbia, Canada, Miner. Deposita, 32, 44, 10.1007/s001260050071
Tindell, 2018, The Kago low-sulfidation gold and silver deposit: a peripheral mineralization to the Nansatsu high-sulfidation system, southern Kyushu, Japan, Ore Geol. Rev., 102, 951, 10.1016/j.oregeorev.2017.10.027
Urusova, 1975, Volume properties of aqueous solutions of sodiumchloride at elevated temperatures and pressures, Russ. J. Inorg. Chem., 20, 1717
Vallance, 2004, The granite hosted gold deposit of Moulin de Cheni (Saint-Yrieix district, Massif Central, France): Petrographic, structural, fluid inclusion and oxygen isotope constraints, Miner. Deposita, 39, 265, 10.1007/s00126-003-0396-6
Vallance, 2003, Fluid–rock interactions and the role of late Hercynian aplite intrusion in the genesis of the Castromil gold deposit, northern Portugal, Chem. Geol., 194, 201, 10.1016/S0009-2541(02)00278-4
Verdel, 2011, A Paleogene extensional arc flare-up in Iran, Tectonics, 30, 10.1029/2010TC002809
Vidal, 2016, The Marianas-San Marcos vein system: characteristics of a shallow low-sulfidation epithermal Au-Ag deposit in the Cerro Negro district, Deseado Massif, Patagonia, Argentina, Miner. Deposita, 51, 725, 10.1007/s00126-015-0633-9
Wang, 2019, A review of intermediate sulfidation epithermal deposits and subclassification, Ore Geol. Rev., 107, 434, 10.1016/j.oregeorev.2019.02.023
Wang, 1999, Fluid inclusion studies of the Chinkuashih high-sulfidation gold–copper deposits in Taiwan, Chem. Geol., 154, 155, 10.1016/S0009-2541(98)00129-6
White, 1990, Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration, J. Geochem. Expl., 36, 445, 10.1016/0375-6742(90)90063-G
White, 1995, Epithermal gold deposits: styles, characteristics and exploration, SEG News l, 27, 1
Whitney, 2010, Abbreviations for names of rock-forming minerals, Am. Mineral., 95, 185, 10.2138/am.2010.3371
Wilkinson, 2001, Fluid inclusions in hydrothermal ore deposits, Lithos, 55, 229, 10.1016/S0024-4937(00)00047-5
Xie, 2017, Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China: evidence for a magmatic link, Ore Geol. Rev., 80, 891, 10.1016/j.oregeorev.2016.08.007
Yasami, 2019, Distribution of alteration, mineralization and fluid inclusion features in porphyry–high sulfidation epithermal systems: the Chodarchay example, NW Iran, Ore Geol. Rev., 104, 227, 10.1016/j.oregeorev.2018.11.006
Yasami, 2018, Sulfur isotope geochemistry of the Chodarchay Cu-Au deposit, Tarom, NW Iran, N. Jb. Miner. Abh. (J. Min. Geochem.), 195, 101, 10.1127/njma/2018/0097
Yasami, 2017, Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran, Ore Geol. Rev., 86, 212, 10.1016/j.oregeorev.2017.01.028
Yilmaz, 2007, Low-sulfidation type Au–Ag mineralization at Bergama, Izmir, Turkey, Ore Geol. Rev., 32, 81, 10.1016/j.oregeorev.2006.10.007
Yilmaz, 2010, Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/Western Turkey), Ore Geol. Rev., 37, 236, 10.1016/j.oregeorev.2010.04.001
Yu, 2018, Geology, fluid inclusion and H-O-S isotopes of the Kuruer Cu-Au deposit in Western Tianshan, Xinjiang, China, Ore Geol. Rev., 100, 237, 10.1016/j.oregeorev.2017.07.016
Zhai, 2013, Fluid evolution of the Jiawula Ag–Pb–Zn deposit, Inner Mongolia: mineralogical, fluid inclusion, and stable isotopic evidence, Int. Geol. Rev., 55, 204, 10.1080/00206814.2012.692905
Zhai, 2009, Geology, geochemistry, and genesis of Axi: a Paleozoic low-sulfidation type epithermal gold deposit in Xinjiang, China, Ore Geol. Rev., 36, 265, 10.1016/j.oregeorev.2009.04.003
Zhang, 2019, Geochronology and isotope geochemistry studies of an epithermal gold deposit in the northern Lesser Khingan Range, NE China: the Gaosongshan example, Ore Geol. Rev., 105, 356, 10.1016/j.oregeorev.2019.01.001
Zhang, 2013, Geology, C-H–O–S–Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai Mountains, central China: implication for ore genesis, Ore Geol. Rev., 53, 343, 10.1016/j.oregeorev.2013.01.017
Zhang, 1987, Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCI–CaCl2–H2O using synthetic fluid inclusions, Chem. Geol., 64, 335, 10.1016/0009-2541(87)90012-X
Zhong, 2018, Geology and fluid inclusion geochemistry of the Zijinshan high-sulfidation epithermal Cu-Au deposit, Fujian Province, SE China: implication for deep exploration targeting, J. Geochem. Expl., 184, 49, 10.1016/j.gexplo.2017.10.004
Zhong, 2017, Geology, fluid inclusion and stable isotope study of the Yueyang Ag-Au-Cu deposit, Zijinshan orefield, Fujian Province, China, Ore Geol. Rev., 86, 254, 10.1016/j.oregeorev.2017.02.023
Zhong, 2017, Epithermal deposits in South China: geology, geochemistry, geochronology and tectonic setting, Gond. Res., 42, 193, 10.1016/j.gr.2016.10.008
Zhong, 2017, Epithermal deposits in South China: geology, geochemistry, geochronology and tectonic setting, Gondwana Res., 42, 193, 10.1016/j.gr.2016.10.008