Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom–Hashtjin metallogenic belt, NW Iran

Ore Geology Reviews - Tập 109 - Trang 564-584 - 2019
Hossein Kouhestani1, Mir Ali Asghar Mokhtari1, Kezhang Qin2,3,4, Junxing Zhao2
1Department of Geology, Faculty of Sciences, University of Zanjan, Zanjan 45195–313, Iran
2Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
3CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing 100101, China
4University of Chinese Academy of Sciences, Beijing, 100049, China

Tài liệu tham khảo

Aghazadeh, 2015, Petrogenesis and U-Pb SHRIMP dating of tarom plutons, J. Geosci., 24, 3 Aghazadeh, 2011, Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geol. Mag., 148, 980, 10.1017/S0016756811000380 Albinson, 2001, Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data, 1 Albinson, 1988, Geologic reconstruction of paleosurfaces in the Sombrerete, Colorado, and Fresnillo districts, Zacatecas State, Mexico, Econ. Geol., 83, 1647, 10.2113/gsecongeo.83.8.1647 Alderton, 2000, The nature and genesis of gold-silver-tellurium mineralization in the Metaliferi Mountains of western Romania, Econ. Geol., 95, 495 Amini, 2001, Geological map of Tarom, Sheet no. 5763, Scale 1:100000, 1 sheet, Geol. Surv. Iran Asiabanha, 2012, Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran, Lithos, 148, 98, 10.1016/j.lithos.2012.05.014 Azizi, 2008, Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. J. Geod., 45, 178, 10.1016/j.jog.2007.11.001 Azizi, 2009, Genesis of Tertiary magnetite-apatite deposits, southeast of Zanjan, Iran, Res. Geol., 59, 330, 10.1111/j.1751-3928.2009.00101.x Bakker, 2003, Package FLUIDS 1, Computer programs for analysis of fluid inclusions data and for modeling bulk fluid properties, Chem. Geol., 194, 3, 10.1016/S0009-2541(02)00268-1 Barton, 1977, Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: part III. Progress toward interpretation of the chemistry of the ore-forming environment, Econ. Geol., 72, 1, 10.2113/gsecongeo.72.1.1 Berger, 1983, Conceptual models of epithermal metal deposits. Shanks, Cameron Volume on Unconventional Mineral Deposits, Am. Inst. Min. Metall. and Pet. Eng., 191 Bodnar, 1985, Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O–NaCl to 1000 °C and 1500 bars, Geochim. Cosmochim. Acta, 49, 1861, 10.1016/0016-7037(85)90081-X Bodnar, 1985, Fluid-inclusion systematics in epithermal systems, Rev. Econ. Geol., 2, 73 Bouzari, 2006, Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado Hypogene Protore, I Region, northern Chile, Econ. Geol., 101, 95, 10.2113/gsecongeo.101.1.95 Burnham, 1979, Chapter 3: magmas and hydrothermal fluids, 71 Camprubi, 2007, Epithermal deposits in Mexico: update of current knowledge, and an empirical reclassification, Geol. Soc. Spec. Pup., 422, 377 Canet, 2011, A model of boiling for fluid inclusion studies: application to the Bolaños Ag–Au–Pb–Zn epithermal deposit, Western Mexico, J. Geochem. Expl., 110, 118, 10.1016/j.gexplo.2011.04.005 Castro, 2013, Late Eocene-Oligocene postcollisional monzonitic intrusions from the Alborz magmatic belt, NW Iran: an example of monzonite magma generation from a metasomatised mantle source, Lithos, 180–181, 109, 10.1016/j.lithos.2013.08.003 Chen, 2009, Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: implications for ore genesis, Ore Geol. Rev., 35, 245, 10.1016/j.oregeorev.2008.11.003 Chi, 2017, Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Miner. Deposita, 52, 211, 10.1007/s00126-016-0657-9 Çiçek, 2016, Origin and evolution of hydrothermal fluids in epithermal Pb-Zn-Cu ± Au ± Ag deposits at Koru and Tesbihdere mining districts, Çanakkale, Biga Peninsula, NW Turkey, Ore Geol. Rev., 78, 176, 10.1016/j.oregeorev.2016.03.020 Clayton, 1961, The use of oxygen isotopes in high-temperature geological thermometry, J. Geol., 69, 447, 10.1086/626760 Clayton, 1963, The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis, Geochim. Cosmochim. Acta, 27, 43, 10.1016/0016-7037(63)90071-1 Cole, 1986, The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: a preliminary assessment and possible implications for the formation of epithermal precious-metal ore deposits, J. Geochem. Explo., 25, 45, 10.1016/0375-6742(86)90007-5 Cooke, 2001, Epithermal Au–Ag–Te mineralization, Acupan, Baguio district, Philippines: Numerical simulations of mineral deposition, Econ. Geol., 96, 109 Cooke, 2000, Characteristics and genesis of epithermal gold deposits, Rev. Econ. Geol., 13, 221 Corral, 2017, Origin and evolution of mineralizing fluids and exploration of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama) from a fluid inclusion and stable isotope perspective, Ore Geol. Rev., 80, 947, 10.1016/j.oregeorev.2016.09.008 Davis, 1990, Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, and NaCl–CaCl2–H2O, Geochim. Cosmochim. Acta, 54, 591, 10.1016/0016-7037(90)90355-O Drummond, 1985, Chemical evolution and mineral deposition in boiling hydrothermal processes in the light of studies in rock-buffered systems; I, iron-copper-zinc-lead sulfide solubility relations, Econ. Geol., 87, 1 Einaudi, 2003, Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments, 285 Esmaeli, 2015, Fluid inclusion and stable isotope study of the Khalyfehlou copper deposit, southeast Zanjan, Iran. Arab. J. Geosci., 8, 9625, 10.1007/s12517-015-1907-3 Fan, 2011, The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids, Int. Geol. Rev., 53, 25, 10.1080/00206810902875370 Faure, 1986, 589 Faure, 2003, δD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems: do values reflect those of original hydrothermal water?, Econ. Geol., 98, 657 Faure, 2002, The Hishikari Au–Ag epithermal deposit, Japan: oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids, Econ. Geol., 97, 481, 10.2113/gsecongeo.97.3.481 Federico, 2002, Magma-derived gas influx and water–rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy, Geochim. Cosmochim. Acta, 66, 963, 10.1016/S0016-7037(01)00813-4 Field, 1985, Light stable-isotope systematics in the epithermal environment, Rev. Econ. Geol., 2, 99 Fournier, 1985, The behavior of silica in hydrothermal solutions, Rev. Econ. Geol., 2, 45 Gemmell, 2004, 57 Gemmell, 1988, The Santo Niño silver-lead-zinc vein, Fresnillo, Zacatecas, Mexico: part I. Structure, vein stratigraphy, and mineralogy, Econ. Geol., 83, 1597, 10.2113/gsecongeo.83.8.1597 Ghasemi Siani, 2015, Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojeh epithermal gold mineralization, NW Iran, Open Geosci., 7, 207 Ghorbani, 2013, 569 Giggenbach, 1992, Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries, Econ. Geol., 87, 1927 Goldstein, 2003, Petrographic analysis of fluid inclusions, 9 Goldstein, 1994 Haas, 1971, The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, Econ. Geol., 66, 940, 10.2113/gsecongeo.66.6.940 Hall, 1988, Freezing point depression of NaCl–KCl–H2O solutions, Econ. Geol., 83, 197, 10.2113/gsecongeo.83.1.197 Hayba, 1997, Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: Part V. Epithermal mineralization from fluid mixing in the OH Vein, Econ. Geol., 92, 29, 10.2113/gsecongeo.92.1.29 Heald, 1987, Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types, Econ. Geol., 82, 1, 10.2113/gsecongeo.82.1.1 Hedenquist, 1998, Evolution of an intrusion-centered hydrothermal system: far southeast Lepanto porphyry and epithermal Cu–Au deposits, Philippines, Econ. Geol., 93, 373, 10.2113/gsecongeo.93.4.373 Hedenquist, 1998, Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu–Au deposits, Philippines, Econ. Geol., 93, 373, 10.2113/gsecongeo.93.4.373 Hedenquist, 2000, Exploration for epithermal gold deposits, Rev. Econ. Geol., 13, 245 Hedenquist, 1994, The role of magmas in the formation of hydrothermal ore deposits, Nature, 370, 519, 10.1038/370519a0 Hemley, 1986, Effect of pressure on ore mineral solubilities under hydrothermal conditions, Geol., 14, 377, 10.1130/0091-7613(1986)14<377:EOPOOM>2.0.CO;2 Hemley, 1992, Hydrothermal ore forming processes in the light of studies in rock-buffered system: I. Iron–copper–zinc–lead sulphide solubility reactions, Econ. Geol., 87, 1, 10.2113/gsecongeo.87.1.1 Henley, 2000, Underground fumaroles: “Excess heat” effects in vein formation, Econ. Geol., 95, 453 Hirayama, 1966, Geology of the Tarom district, western part (Zanjan area, north-west Iran), Geol. Surv. Iran, Rep., 8, 31 p Hoefs, 2015 Hosseinzadeh, 2016, Khalifehlu deposit: high-sulfidation epithermal Cu-Au mineralization in the Tarom magmatic zone, north Khoramdareh, Sci. Quat. J. Geosci., 25, 179 Irannezhadi, 2007, Tertiary arc-related volcanism in Central Alborz Mountains, Geoph. Res., Abs., 9, 867 Izawa, 1990, The Hishikari gold deposit: High-grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan, J. Geochem. Expl., 36, 1, 10.1016/0375-6742(90)90050-K Jamali, 2010, Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran, Int. Geol. Rev., 52, 608, 10.1080/00206810903416323 Jamali, 2015, Relationships between arc maturity and Cu–Mo–Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt, Ore Geol. Rev., 65, 487, 10.1016/j.oregeorev.2014.06.017 Jamali, 2012, Petrogenesis and tectono-magmatic setting of Meso-Cenozoic magmatism in Azerbaijan province, northwestern Iran, Pet., New Perspec. Appl. INTECH, Croatia, 39 Jebrak, 1997, Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution, Ore Geol. Rev., 12, 111, 10.1016/S0169-1368(97)00009-7 Jiang, 2018, Hydrothermal alteration, fluid inclusions and stable isotope characteristics of the Shaquanzi Fe–Cu deposit, Eastern Tianshan: implications for deposit type and metallogenesis, Ore Geol. Rev., 100, 385, 10.1016/j.oregeorev.2016.09.025 Jobson, 1994, Structural controls and genesis of epithermal gold-bearing breccias at the Lebong Tandai mine, Western Sumatra, Indonesia, J. Geochem. Expl., 50, 409, 10.1016/0375-6742(94)90034-5 John, 2001, Miocene and early Pliocene epithermal gold–silver deposits in the northern Great Basin, western USA: Characteristics, distribution, and relationship to magmatism, Econ. Geol., 96, 1827, 10.2113/gsecongeo.96.8.1827 John, 2003, Geological setting and genesis of the Mule Canyon low-sulfidation epithermal gold–silver deposit, north-central Nevada, Econ. Geol., 98, 425, 10.2113/gsecongeo.98.2.425 Klemm, 2007, Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu–Mo ore deposition from low-salinity magmatic fluids, Econ. Geol., 102, 1021, 10.2113/gsecongeo.102.6.1021 Kouhestani, 2018 Kouhestani, 2017, Mineralization and fluid evolution of epithermal base metal veins from the Aqkand deposit, NW Iran. N. Jb. Miner. Abh. (J. Min. Geochem.), 194, 139, 10.1127/njma/2017/0036 Kouhestani, 2015, Constraints on the ore fluids in the Chah Zard breccia-hosted epithermal Au-Ag deposit, Iran: fluid inclusions and stable isotope studies, Ore Geol. Rev., 65, 512, 10.1016/j.oregeorev.2013.06.003 Kouhestani, 2018, Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geol. Rev., 93, 1, 10.1016/j.oregeorev.2017.12.012 Kouhestani, 2018, Timing and genesis of ore formation in the Qarachilar Cu-Mo-Au deposit, Ahar-Arasbaran metallogenic zone, NW Iran: evidence from geology, fluid inclusions, O-S isotopes and Re–Os geochronology, Ore Geol. Rev., 102, 757, 10.1016/j.oregeorev.2018.10.007 Kouzmanov, 2003, Stable isotopic constrains on the origin of epithermal Cu-Au and related porphyry copper mineralizations in the southern Panagyurishte district, Srednogorie zone, Bulgaria, 1181 Lattanzi, 1991, Applications of fluid inclusions in the study and exploration of mineral deposits, Eur. J. Mineral., 3, 689, 10.1127/ejm/3/4/0689 Li, 2014, Geology and geochemistry of the Qiaoxiahala Fe–Cu–Au deposit, Junggar region, northwest China, Ore Geol. Rev., 57, 462, 10.1016/j.oregeorev.2013.08.003 Li, 2018, Geology, fluid inclusion, and stable isotope systematics of the Dongyang epithermal gold deposit, Fujian Province, southeast China: implications for ore genesis and mineral exploration, J. Geochem. Expl., 195, 16, 10.1016/j.gexplo.2018.02.009 Li, 2018, Genesis of the Ancun epithermal gold deposit, southeast China: evidence from fluid inclusion and stable isotope data, J. Geochem. Expl., 195, 157, 10.1016/j.gexplo.2018.01.016 Li, 2006, Calculation of sulfur isotope fractionation in sulfides, Geochim. Cosmochim. Acta, 70, 1789, 10.1016/j.gca.2005.12.015 Liu, 2014, Fluid inclusions and H-O–S–Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China, Ore Geol. Rev., 59, 83, 10.1016/j.oregeorev.2013.12.006 Liu, 2016, Geochemistry, geochronology, and fluid inclusion study of the Late Cretaceous Newton epithermal gold deposit, British Columbia. Can. J. Earth Sci., 53, 10, 10.1139/cjes-2015-0068 Méheut, 2007, Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first-principles density-functional theory, Geochim. Cosmochim. Acta, 71, 3170, 10.1016/j.gca.2007.04.012 Mehrabi, 2014, Investigation on intermediate-sulfidation epithermal mineralization at Gulojeh N.4 anomaly (north of Zanjan), using mineralogical, alteration, and fluid inclusion geochemistry data, J Econ. Geol., 6, 1 Mehrabi, 2016, Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran. Ore Geol. Rev., 78, 41, 10.1016/j.oregeorev.2016.03.016 Mehrabi, 2010, Investigation on mineralization and genetic model of Gulojeh Cu-Au vein deposit (north of Zanjan), using mineralogical, geochemical and fluid inclusion data, J. Sci., 35, 185 Mikaeili, 2018, The Shah-Ali-Beiglou Zn–Pb–Cu (Ag) deposit, Iran: an example of intermediate-sulfidation epithermal type mineralization, Min., 8, 148 Mohammadi Niaei, 2015, The Ay Qalasi deposit: an epithermal Pb–Zn (Ag) mineralization in the Urumieh-Dokhtar volcanic belt of northwestern, Iran. N. Jb. Miner. Abh. (J. Min. Geochem.), 192, 263, 10.1127/njma/2015/0284 Moncada, 2017, Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México. Ore Geol. Rev., 89, 143, 10.1016/j.oregeorev.2017.05.024 Moncada, 2012, Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: application to exploration, J. Geochem. Expl., 114, 20, 10.1016/j.gexplo.2011.12.001 Moritz, 2003, Controls on ore formation at high sulfidation Au–Cu Chelopech deposit, Bulgaria: Evidence from infrared fluid inclusion microthermometry of enargite and isotope systematics of barite, 1209 Moritz, 2016, Metallogeny of the Lesser Caucasus: from Arc Construction to Postcollision Evolution, Econ. Geol. Spec. Pub., 19, 57 Moritz, 2016, Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan, Gond. Res., 37, 465, 10.1016/j.gr.2015.10.009 Muntean, 2001, Porphyry-epithermal transition: Maricunga Belt, Northern Chile, Econ. Geol., 96, 743, 10.2113/gsecongeo.96.4.743 Nabatian, 2014, Petrogenesis of Tarom high-potassic granitoids in the Alborz-Azarbaijan belt, Iran: geochemical, U-Pb zircon and Sr–Nd–Pb isotopic constraints, Lithos, 184–187, 324, 10.1016/j.lithos.2013.11.002 Nabatian, 2016, Zircon U-Pb ages, geochemical and Sr–Nd–Pb–Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran, Lithos, 244, 43, 10.1016/j.lithos.2015.11.020 Naden, 2005, Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island, Greece. Geol., 33, 541 Ohmoto, 1972, Systematics of sulfur and carbon isotopes in hydrothermal ore deposits, Econ. Geol., 67, 551, 10.2113/gsecongeo.67.5.551 Ohmoto, 1979, Isotope of sulfur and carbon, 509 Ouyang, 2014, The nature and timing of ore formation in the Budunhua copper deposit, southern Great Xing'an Range: evidence from geology, fluid inclusions, and U-Pb and Re–Os geochronology, Ore Geol. Rev., 63, 238, 10.1016/j.oregeorev.2014.05.016 Pirajno, 2009, 1250 Prokofiev, 2010, Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia, Econ. Geol., 105, 395, 10.2113/gsecongeo.105.2.395 Qin, 2002, Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: epochs, features, tectonic linkage and exploration significance, Res. Geol., 52, 291, 10.1111/j.1751-3928.2002.tb00140.x Rabiei, 2017, Hydrothermal rare earth element (Xenotime) mineralization at maw zone, athabasca basin, canada, and its relationship to unconformity-related uranium deposits, Econ. Geol., 112, 1483, 10.5382/econgeo.2017.4518 Ramboz, 1982, Fluid immiscibility in natural processes: use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility, Chem. Geol., 37, 29, 10.1016/0009-2541(82)90065-1 Rezeau, 2017, 30 Myr of Cenozoic magmatism along the Tethyan margin during Arabia-Eurasia accretionary orogenesis (Meghri–Ordubad pluton, southernmost Lesser Caucasus), Lithos, 288–289, 108, 10.1016/j.lithos.2017.07.007 Rezeau, 2016, Temporal and genetic link between incremental pluton assembly and pulsed porphyry Cu–Mo formation in accretionary orogens, Geol., 44, 627, 10.1130/G38088.1 Roedder, 1984, Fluid inclusions, Rev. Mineral., 12, 644 p Roedder, 1980, Geologic pressure determinations from fluid inclusion studies, Annu. Rev. Earth Planet. Sci., 8, 263, 10.1146/annurev.ea.08.050180.001403 Rolland, 2009, Blueschists of the Amassia-Stepanavan Suture Zone (Armenia): linking Tethys subduction history from E Turkey to W Iran, Int. J. of Earth Sci., 98, 533, 10.1007/s00531-007-0286-8 Ronacher, 2000, Evidence for fluid phase separation in high-grade ore zones at the Porgera gold deposit, Papua New Guinea, Miner. Deposita, 35, 683, 10.1007/s001260050271 Rosso, 1995, Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2, Geochim. Cosmochim. Acta, 59, 3961, 10.1016/0016-7037(95)94441-H Rusk, 2008, Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana, Econ. Geol., 103, 307, 10.2113/gsecongeo.103.2.307 Rye, 1993, Evolution of magmatic fluids in the epithermal environment: the stable isotope perspective, Econ. Geol., 88, 733, 10.2113/gsecongeo.88.3.733 Rye, 1974, Sulfur and carbon isotopes and ore genesis: a review, Econ. Geol., 69, 826, 10.2113/gsecongeo.69.6.826 Sabeva, 2017, Ore petrology, hydrothermal alteration, fluid inclusions, and sulfur stable isotopes of the Milin Kamak intermediate sulfidation epithermal Au-Ag deposit in Western Srednogorie, Bulgaria, Ore Geol. Rev., 88, 400, 10.1016/j.oregeorev.2017.05.013 Scott, 1998, Extreme boiling model for variable salinity of the Hokko low-sulfidation epithermal Au prospect, southwestern Hokkaido, Japan, Miner. Deposita, 33, 568, 10.1007/s001260050173 Seedorff, 2005, 251 Shepherd, 1985, 223 Sheppard, 1986, Characterization and isotopic variations in natural waters, Rev. Min. Geochem., 16, 165 Sherlock, 1995, Origin of the McLaughlin mine sheeted vein complex: metal zoning, fluid inclusion and isotopic evidence, Econ. Geol., 90, 2156, 10.2113/gsecongeo.90.8.2156 Siahcheshm, 2014, Hydrothermal evolution in the Maher-Abad porphyry Cu–Au deposit, SW Birjand, Eastern Iran: evidence from fluid inclusions, Ore Geol. Rev., 58, 1, 10.1016/j.oregeorev.2013.10.005 Sillitoe, 2010, Porphyry copper systems, Econ. Geol., 105, 3, 10.2113/gsecongeo.105.1.3 Sillitoe, 2003, Linkages between volcanotectonic settings, ore fluid compositions, and epithermal precious-metal deposits, Econ. Geol. Spec. Pub., 10, 315 Simmons, 1995, Magmatic contributions to low-sulfidation epithermal deposits, 455 Simmons, 2000, Origin of massive calcite veins in the Golden Cross low-sulfidation, epithermal Au–Ag deposit, New Zealand, Econ. Geol., 95, 99, 10.2113/gsecongeo.95.1.99 Simmons, 2006, Gold in magmatic hydrothermal solutions and the rapid formation of a Giant ore deposit, Science, 314, 288, 10.1126/science.1132866 Simmons, 2000, Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments, Econ. Geol., 95, 971, 10.2113/gsecongeo.95.5.971 Simmons, 1994, Origin of calcite in a boiling geothermal system, Am. J. Sci., 294, 361, 10.2475/ajs.294.3.361 Simmons, 2005, 485 Simon, 1999, Epithermal gold mineralization in an old volcanic arc: the Jacinto deposit, Camaguey district, Cuba, Econ. Geol., 94, 487, 10.2113/gsecongeo.94.4.487 Simpson, 2001, Hydrothermal alteration and hydrologic evolution of the Golden Cross epithermal Au–Ag deposit, New Zealand, Econ. Geol., 96, 773 Spycher, 1989, Evolution of a Broadlands-type epithermal ore fluid along alternative P-T paths: implications for the transport and deposition of base, precious, and volatile metals, Econ. Geol., 84, 328, 10.2113/gsecongeo.84.2.328 Takács, 2017, Ore mineralogy and fluid inclusion constraints on the temporal and spatial evolution of a high-sulfidation epithermal Cu-Au-Ag deposit in the recsk ore complex, Hungary, Econ. Geol., 112, 1461, 10.5382/econgeo.2017.4517 Taylor, 1974, The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Econ. Geol., 69, 843, 10.2113/gsecongeo.69.6.843 Taylor, 2009, 287 Thiersch, 1997, Epithermal mineralization and ore controls of the Shasta Au–Ag deposit, Toodoggone District, British Columbia, Canada, Miner. Deposita, 32, 44, 10.1007/s001260050071 Tindell, 2018, The Kago low-sulfidation gold and silver deposit: a peripheral mineralization to the Nansatsu high-sulfidation system, southern Kyushu, Japan, Ore Geol. Rev., 102, 951, 10.1016/j.oregeorev.2017.10.027 Urusova, 1975, Volume properties of aqueous solutions of sodiumchloride at elevated temperatures and pressures, Russ. J. Inorg. Chem., 20, 1717 Vallance, 2004, The granite hosted gold deposit of Moulin de Cheni (Saint-Yrieix district, Massif Central, France): Petrographic, structural, fluid inclusion and oxygen isotope constraints, Miner. Deposita, 39, 265, 10.1007/s00126-003-0396-6 Vallance, 2003, Fluid–rock interactions and the role of late Hercynian aplite intrusion in the genesis of the Castromil gold deposit, northern Portugal, Chem. Geol., 194, 201, 10.1016/S0009-2541(02)00278-4 Verdel, 2011, A Paleogene extensional arc flare-up in Iran, Tectonics, 30, 10.1029/2010TC002809 Vidal, 2016, The Marianas-San Marcos vein system: characteristics of a shallow low-sulfidation epithermal Au-Ag deposit in the Cerro Negro district, Deseado Massif, Patagonia, Argentina, Miner. Deposita, 51, 725, 10.1007/s00126-015-0633-9 Wang, 2019, A review of intermediate sulfidation epithermal deposits and subclassification, Ore Geol. Rev., 107, 434, 10.1016/j.oregeorev.2019.02.023 Wang, 1999, Fluid inclusion studies of the Chinkuashih high-sulfidation gold–copper deposits in Taiwan, Chem. Geol., 154, 155, 10.1016/S0009-2541(98)00129-6 White, 1990, Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration, J. Geochem. Expl., 36, 445, 10.1016/0375-6742(90)90063-G White, 1995, Epithermal gold deposits: styles, characteristics and exploration, SEG News l, 27, 1 Whitney, 2010, Abbreviations for names of rock-forming minerals, Am. Mineral., 95, 185, 10.2138/am.2010.3371 Wilkinson, 2001, Fluid inclusions in hydrothermal ore deposits, Lithos, 55, 229, 10.1016/S0024-4937(00)00047-5 Xie, 2017, Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China: evidence for a magmatic link, Ore Geol. Rev., 80, 891, 10.1016/j.oregeorev.2016.08.007 Yasami, 2019, Distribution of alteration, mineralization and fluid inclusion features in porphyry–high sulfidation epithermal systems: the Chodarchay example, NW Iran, Ore Geol. Rev., 104, 227, 10.1016/j.oregeorev.2018.11.006 Yasami, 2018, Sulfur isotope geochemistry of the Chodarchay Cu-Au deposit, Tarom, NW Iran, N. Jb. Miner. Abh. (J. Min. Geochem.), 195, 101, 10.1127/njma/2018/0097 Yasami, 2017, Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran, Ore Geol. Rev., 86, 212, 10.1016/j.oregeorev.2017.01.028 Yilmaz, 2007, Low-sulfidation type Au–Ag mineralization at Bergama, Izmir, Turkey, Ore Geol. Rev., 32, 81, 10.1016/j.oregeorev.2006.10.007 Yilmaz, 2010, Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/Western Turkey), Ore Geol. Rev., 37, 236, 10.1016/j.oregeorev.2010.04.001 Yu, 2018, Geology, fluid inclusion and H-O-S isotopes of the Kuruer Cu-Au deposit in Western Tianshan, Xinjiang, China, Ore Geol. Rev., 100, 237, 10.1016/j.oregeorev.2017.07.016 Zhai, 2013, Fluid evolution of the Jiawula Ag–Pb–Zn deposit, Inner Mongolia: mineralogical, fluid inclusion, and stable isotopic evidence, Int. Geol. Rev., 55, 204, 10.1080/00206814.2012.692905 Zhai, 2009, Geology, geochemistry, and genesis of Axi: a Paleozoic low-sulfidation type epithermal gold deposit in Xinjiang, China, Ore Geol. Rev., 36, 265, 10.1016/j.oregeorev.2009.04.003 Zhang, 2019, Geochronology and isotope geochemistry studies of an epithermal gold deposit in the northern Lesser Khingan Range, NE China: the Gaosongshan example, Ore Geol. Rev., 105, 356, 10.1016/j.oregeorev.2019.01.001 Zhang, 2013, Geology, C-H–O–S–Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai Mountains, central China: implication for ore genesis, Ore Geol. Rev., 53, 343, 10.1016/j.oregeorev.2013.01.017 Zhang, 1987, Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCI–CaCl2–H2O using synthetic fluid inclusions, Chem. Geol., 64, 335, 10.1016/0009-2541(87)90012-X Zhong, 2018, Geology and fluid inclusion geochemistry of the Zijinshan high-sulfidation epithermal Cu-Au deposit, Fujian Province, SE China: implication for deep exploration targeting, J. Geochem. Expl., 184, 49, 10.1016/j.gexplo.2017.10.004 Zhong, 2017, Geology, fluid inclusion and stable isotope study of the Yueyang Ag-Au-Cu deposit, Zijinshan orefield, Fujian Province, China, Ore Geol. Rev., 86, 254, 10.1016/j.oregeorev.2017.02.023 Zhong, 2017, Epithermal deposits in South China: geology, geochemistry, geochronology and tectonic setting, Gond. Res., 42, 193, 10.1016/j.gr.2016.10.008 Zhong, 2017, Epithermal deposits in South China: geology, geochemistry, geochronology and tectonic setting, Gondwana Res., 42, 193, 10.1016/j.gr.2016.10.008