Fluid dynamics in crystal growth: The good, the bad, and the ugly
Tài liệu tham khảo
Derby, 2010, 221
Kakimoto, 2015, Fluid dynamics: modeling and analysis, 845
Tsukada, 2015, The role of Marangoni convection in crystal growth, 871
Vizman, 2015, Flow control by magnetic fields during crystal growth from melt, 909
Capper, 2015, Oscillatory-driven fluid flow control during crystal growth from the melt, 951
Talalaev, 2015, Transport phenomena in vapor phase epitaxy reactors, 909
Green, 2002, Crystallizer mixing: understanding and modeling crystallizer mixing and suspension flow, 181
Derby, 2015, Heat transfer analysis and design for bulk crystal growth: perspectives on the Bridgman method, 793
Wang, 1991, Exact solutions of the steady-state Navier-Stokes equations, Ann. Rev. Fluid Mech, 23, 159, 10.1146/annurev.fl.23.010191.001111
Brown, 1988, Theory of transport processes in single crystal growth from the melt, AIChE J., 34, 881, 10.1002/aic.690340602
Rosenberger, 1979
Rosenberger, 1983, Interfacial transport in crystal growth, a parametric comparison of convective effects, J. Cryst. Growth, 65, 91, 10.1016/0022-0248(83)90043-X
Balasubramanian, 1984, Fluid motion in the Czochralski method of crystal growth, PhysicoChem. Hydrodyn, 5, 3
Derby, 1988, Theoretical modeling of Czochralski crystal growth, MRS Bulletin XIII, 29, 10.1557/S0883769400064162
Hjellming, 1987, Melt motion in a Czochralski crystal puller with an axial magnetic field: motion due to buoyancy and thermocapillarity, J. Fluid Mech, 182, 335, 10.1017/S0022112087002362
Jones, 1988, Scaling analysis of the flow of a low Prandtl number Czochralski melt, J. Cryst. Growth, 88, 465, 10.1016/0022-0248(88)90145-5
Wheeler, 1989, Boundary layer models in Czochralski crystal growth, J. Cryst. Growth, 97, 64, 10.1016/0022-0248(89)90248-0
Sackinger, 1989, A finite-element method for analysis of fluid flow, heat transfer and free interfaces in Czochralski crystal growth, Int. J. Numer. Meth. Fluids, 9, 453, 10.1002/fld.1650090406
Schwabe, 1988, Surface-tension-driven flow in crystal growth melts, vol. 11, 75
Kuhlmann, 1999
Reynolds, 1883, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Phil. Trans. R. Soc. Lond, 174, 935
Rayleigh, 1916, On convective currents in a horizontal layer of fluid when the higher temperature is on the under side, Philos. Mag, 32, 475, 10.1080/14786441608635602
Bénard, 1901, Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent, Ann. Chim. Phys, 23, 62
Wilcox, 1983, Influence of convection on the growth of crystals from solution, J. Cryst. Growth, 65, 133, 10.1016/0022-0248(83)90046-5
Scheel, 1971, Flux growth of large crystals by accelerated crucible-rotation technique, J. Cryst. Growth, 8, 304, 10.1016/0022-0248(71)90078-9
Schulz-Dubois, 1972, Accelerated crucible rotation: hydrodynamics and stirring effect, J. Cryst. Growth, 12, 81, 10.1016/0022-0248(72)90034-6
Elwell, 1975
Janssen-van Rosmalen, 1976, Simulation of perturbations in trains of steps on crystal surfaces, J. Cryst. Growth, 32, 293, 10.1016/0022-0248(76)90110-X
van Enckevort, 1982, Growth phenomena of KDP crystals in relation to the internal structure, J. Cryst. Growth, 60, 67, 10.1016/0022-0248(82)90173-7
Bordui, 1987, Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system, J. Cryst. Growth, 84, 403, 10.1016/0022-0248(87)90268-5
Bordui, 1989, Hydrodynamic control of solution inclusion during crystal growth of KTiOPO4 (KTP) from high-temperature solution, J. Cryst. Growth, 96, 405, 10.1016/0022-0248(89)90539-3
Bordui, 1987
Maynes, 1997, Hydrodynamic scalings in the rapid growth of crystals from solution, J. Cryst. Growth, 178, 545, 10.1016/S0022-0248(96)01192-X
Zhou, 1997, Three-dimensional computations of solution hydrodynamics during growth of potassium dihydrogen phosphate: I. Spin up and steady rotation, J. Cryst. Growth, 180, 497, 10.1016/S0022-0248(97)00251-0
Yeckel, 1998, Three-dimensional computations of solution hydrodynamics during the growth of potassium dihydrogen phosphate: II. Spin down, J. Cryst. Growth, 191, 206, 10.1016/S0022-0248(98)00102-X
Derby, 1999, Finite element modeling of 3D fluid dynamics in crystal growth systems, Int. J. Comput. Fluid Dyn, 12, 225, 10.1080/10618569908940827
Vartak, 2000, An analysis of flow and mass transfer during the solution growth of potassium titanyl phosphate, J. Cryst. Growth, 210, 704, 10.1016/S0022-0248(99)00729-0
Vartak, 2001, On stable algorithms and accurate solutions for convection-dominated mass transfer in crystal growth modeling, J. Cryst. Growth, 230, 202, 10.1016/S0022-0248(01)01344-6
Kwon, 2001, Modeling the coupled effects of interfacial and bulk phenomena during solution crystal growth, J. Cryst. Growth, 230, 328, 10.1016/S0022-0248(01)01345-8
Vartak, 2005, Time-dependent, three-dimensional flow and mass transport during solution growth of potassium titanyl phosphate, J. Cryst. Growth, 281, 391, 10.1016/j.jcrysgro.2005.04.037
Vartak, 2005, On the validity of boundary layer analysis for flow and mass transfer caused by rotation during the solution growth of large, single crystals, J. Cryst. Growth, 283, 479, 10.1016/j.jcrysgro.2005.06.003
Gasperino, 2006, Mass transfer limitations at crystallizing interfaces in an atomic force microscopy fluid cell: a finite element analysis, Langmuir, 22, 6578, 10.1021/la060592k
Kwon, 2007, Assessing the dynamics of liquid-phase solution growth via step growth models: from BCF to FEM, Prog. Cryst. Growth Charact, 53, 167, 10.1016/j.pcrysgrow.2007.09.001
Sugiyama, 2008, Protein–salt–water solution phase diagram determination by a combined experimental–computational scheme, Cryst. Growth Des, 8, 4208, 10.1021/cg800657k
Rudolph, 2008, Travelling magnetic fields applied to bulk crystal growth from the melt: the step from basic research to industrial scale, J. Cryst. Growth, 310, 1298, 10.1016/j.jcrysgro.2007.11.036
Ono, 2009, A numerical study of the effects of electromagnetic stirring on the distributions of temperature and oxygen concentration in silicon double-crucible Czochralski processing, J. Electrochem. Soc, 144, 764, 10.1149/1.1837482
Donea, 1974, Finite elements in the solution of electromagnetic induction problems, Int. J. Num. Methods Eng, 8, 359, 10.1002/nme.1620080213
Gresho, 1987, A finite element model for induction heating of a metal crucible, J. Cryst. Growth, 85, 40, 10.1016/0022-0248(87)90202-8
Yesilyurt, 2004, The effect of the traveling magnetic field (TMF) on the buoyancy-induced convection in the vertical Bridgman growth of semiconductors, J. Cryst. Growth, 263, 80, 10.1016/j.jcrysgro.2003.11.066
Schwesig, 2004, Comparative numerical study of the effects of rotating and travelling magnetic fields on the interface shape and thermal stress in the VGF growth of InP crystals, J. Cryst. Growth, 266, 224, 10.1016/j.jcrysgro.2004.02.049
Grants, 2004, Stability of melt flow due to a traveling magnetic field in a closed ampoule, J. Cryst. Growth, 269, 630, 10.1016/j.jcrysgro.2004.05.090
Galindo, 2007, Numerical and experimental modeling of the melt flow in a traveling magnetic field for vertical gradient freeze crystal growth, J. Cryst. Growth, 303, 258, 10.1016/j.jcrysgro.2006.11.194
Lantzsch, 2007, Experimental and numerical results on the fluid flow driven by a traveling magnetic field, J. Cryst. Growth, 305, 249, 10.1016/j.jcrysgro.2007.03.047
Niemietz, 2011, Flow modelling with relevance to vertical gradient freeze crystal growth under the influence of a travelling magnetic field, J. Cryst. Growth, 318, 150, 10.1016/j.jcrysgro.2010.10.077
Galindo, 2012, Numerical and experimental modeling of VGF-type buoyant flow under the influence of traveling and rotating magnetic fields, J. Cryst. Growth, 360, 30, 10.1016/j.jcrysgro.2011.09.035
Frank-Rotsch, 2008, Numerical optimization of the interface shape at the VGF growth of semiconductor crystals in a traveling magnetic field, J. Cryst. Growth, 310, 1505, 10.1016/j.jcrysgro.2007.12.020
Frank-Rotsch, 2009, Vertical gradient freeze of 4 inch Ge crystals in a heater-magnet module, J. Cryst. Growth, 311, 2294, 10.1016/j.jcrysgro.2009.01.139
Dropka, 2010, Numerical study on transport phenomena in a directional solidification process in the presence of travelling magnetic fields, J. Cryst. Growth, 312, 1407, 10.1016/j.jcrysgro.2009.09.016
Dropka, 2011, Numerical study on improved mixing in silicon melts by double-frequency TMF, J. Cryst. Growth, 318, 275, 10.1016/j.jcrysgro.2010.10.094
Dropka, 2012, Influence of travelling magnetic fields on S–L interface shapes of materials with different electrical conductivities, J. Cryst. Growth, 338, 208, 10.1016/j.jcrysgro.2011.10.007
Dropka, 2013, Comparison of stirring efficiency of various non-steady magnetic fields during unidirectional solidification of large silicon melts, J. Cryst. Growth, 365, 64, 10.1016/j.jcrysgro.2012.12.009
Dropka, 2013, Accelerated VGF-crystal growth of GaAs under traveling magnetic fields, J. Cryst. Growth, 367, 1, 10.1016/j.jcrysgro.2013.01.017
Frank-Rotsch, 2014, VGF growth of GaAs utilizing heater-magnet module, J. Cryst. Growth, 401, 702, 10.1016/j.jcrysgro.2013.12.063
Dropka, 2014, Enhanced VGF-GaAs growth using pulsed unidirectional TMF, J. Cryst. Growth, 386, 146, 10.1016/j.jcrysgro.2013.09.027
Yeckel, 2013, The prospects for traveling magnetic fields to affect interface shape in the vertical gradient freeze growth of cadmium zinc telluride, J. Cryst. Growth, 364, 133, 10.1016/j.jcrysgro.2012.11.029
Wang, 2014, Integrated analysis and design optimization of germanium purification process using zone-refining technique, J. Cryst. Growth, 408, 42, 10.1016/j.jcrysgro.2014.09.019
Jasinski, 1985, On control of the crystal melt interface shape during growth in a vertical Bridgman configuration, J. Cryst. Growth, 71, 295, 10.1016/0022-0248(85)90084-3
Tiller, 1963, Principles of solidification, 276
Brice, 1986
Lyubimova, 2004, Time-dependent magnetic field influence on GaAs crystal growth by vertical Bridgman method, J. Cryst. Growth, 266, 404, 10.1016/j.jcrysgro.2004.02.071
Rudolph, 1993, Basic problems of vertical Bridgman growth of CdTe, Mater. Sci. Eng. B, 16, 8, 10.1016/0921-5107(93)90005-8
Rudolph, 1994, Fundamental studies on Bridgman growth of CdTe, Prog. Cryst. Growth Charact. Mater, 29, 275, 10.1016/0960-8974(94)90009-4
Zhang, 2012, Maintaining convex interface shapes during electrodynamic gradient freeze growth of cadmium zinc telluride using a dynamic, bell-curve furnace profile, J. Cryst. Growth, 355, 113, 10.1016/j.jcrysgro.2012.06.042
Belouet, 1975, Autoradiography as a tool for studying iron segregation and related defects in KDP single crystals, J. Cryst. Growth, 29, 109, 10.1016/0022-0248(75)90057-3
Belouet, 1981, Growth and characterization of single crystals of KDP family, Prog. Cryst. Growth Charact, 3, 121, 10.1016/0146-3535(80)90016-7
Chernov, 1974, Stability of faceted shapes, J. Cryst. Growth, 24, 11, 10.1016/0022-0248(74)90277-2
Chernov, 1992, How does the flow within the boundary layer influence morphological stability of a vicinal face?, J. Cryst. Growth, 118, 333, 10.1016/0022-0248(92)90080-3
Chernov, 1993, Morphological stability of a vicinal face induced by step flow, J. Cryst. Growth, 132, 405, 10.1016/0022-0248(93)90065-5
Coriell, 1996, Step bunching on a vicinal face of a crystal growing in a flowing solution, J. Cryst. Growth, 169, 773, 10.1016/S0022-0248(96)00470-8
Potapenko, 1996, Morphological instability of steps during crystal growth from solution flow, J. Cryst. Growth, 158, 346, 10.1016/0022-0248(95)00421-1
Lin, 1996, Facet morphology response to nonuniformities in nutrient and impurity supply. II. Numerical simulations, J. Cryst. Growth, 158, 552, 10.1016/0022-0248(95)00426-2
Vekilov, 1996, Nonlinear response of layer growth dynamics in the mixed kinetics–bulk-transport regime, Phys. Rev. E, 54, 6650, 10.1103/PhysRevE.54.6650
Vekilov, 1997, Unsteady crystal growth due to step-bunch cascading, Phys. Rev. E, 55, 3202, 10.1103/PhysRevE.55.3202
Rosenberger, 1999, Finite-amplitude instability in growth step trains with overlapping step supply fields, Phys. Rev. E, 59, 3155, 10.1103/PhysRevE.59.3155
Funaki, 1999, Growth and characterization of CdTe single crystals for radiation detectors, Nucl. Instrum. Methods Phys. Res. A, 436, 120, 10.1016/S0168-9002(99)00607-5
Chen, 2007, Characterization of traveling heater method (THM) grown Cd0.9Zn0.1Te crystals, IEEE Trans. Nucl. Sci, 54, 811, 10.1109/TNS.2007.902369
Awadalla, 2010, Characterization of detector-grade CdZnTe crystals grown by traveling heater method (THM), J. Cryst. Growth, 312, 507, 10.1016/j.jcrysgro.2009.11.007
El Mokri, 1994, Growth of large, high purity, low cost, uniform CdZnTe crystals by the “cold travelling heater method”, J. Cryst. Growth, 138, 168, 10.1016/0022-0248(94)90800-1
Wang, 2005, Growth interface of CdZnTe grown from Te solution with THM technique under static magnetic field, J. Cryst. Growth, 284, 406, 10.1016/j.jcrysgro.2005.02.076
Lan, 1995, A computer simulation of crystal growth by the traveling-solvent method (TSM): pseudo-steady-state calculations, Model. Simul. Mater. Sci. Eng, 3, 71, 10.1088/0965-0393/3/1/007
Stelian, 2014, Numerical modeling of CdTe crystallization from Te solution under terrestrial and microgravity conditions, J. Cryst. Growth, 400, 67, 10.1016/j.jcrysgro.2014.05.001
Peterson, 2016, A fundamental limitation on growth rates in the traveling heater method, J. Cryst. Growth
Bell, 1975, Lee waves in stratified flows with simple harmonic time dependence, J. Fluid Mech, 67, 705, 10.1017/S0022112075000560
Nappo, 2012, Fundamentals, vol. 102, 29
Mullins, 1964, Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys, 35, 444, 10.1063/1.1713333
Kim, 1997, Tackling turbulence with supercomputers, Sci. Am, 62
Kim, 1972, Crystal growth from the melt under destabilizing thermal gradients, J. Electrochem. Soc, 119, 1218, 10.1149/1.2404446
Kim, 1978, Quantitative analysis of the effects of destabilizing vertical thermal gradients on crystal growth and segregation: Ga-doped Ge, J. Electrochem. Soc, 125, 475, 10.1149/1.2131477
