Fluid dynamics-based distance estimation algorithm for macroscale molecular communication
Tài liệu tham khảo
Nakano, 2013
Atakan, 2014
Akyildiz, 2015, The internet of bio-nano things, IEEE Commun. Mag., 53, 32, 10.1109/MCOM.2015.7060516
Atakan, 2012, Body area nanonetworks with molecular communications in nanomedicine, IEEE Commun. Mag., 50, 10.1109/MCOM.2012.6122529
Akyildiz, 2019, Moving forward with molecular communication: From theory to human health applications [point of view], Proc. IEEE, 107, 858, 10.1109/JPROC.2019.2913890
Khan, 2017, Diffusion-based model for synaptic molecular communication channel, IEEE Trans. NanoBiosci., 10.1109/TNB.2017.2707482
Veletić, 2019, Synaptic communication engineering for future cognitive brain–machine interfaces, Proc. IEEE, 107, 1425, 10.1109/JPROC.2019.2915199
Chou, 2019, Designing molecular circuits for approximate maximum a posteriori demodulation of concentration modulated signals, IEEE Trans. Commun., 67, 5458, 10.1109/TCOMM.2019.2913864
Felicetti, 2014, Modeling CD40-based molecular communications in blood vessels, IEEE Trans. NanoBiosci., 13, 230, 10.1109/TNB.2014.2340134
Hamidović, 2019, Passive droplet control in microfluidic networks: A survey and new perspectives on their practical realization, Nano Commun. Netw., 19, 33, 10.1016/j.nancom.2018.10.002
Farsad, 2016, A comprehensive survey of recent advancements in molecular communication, IEEE Commun. Surv. Tut., 18, 1887, 10.1109/COMST.2016.2527741
Farsad, 2013, Tabletop molecular communication: Text messages through chemical signals, PLoS One, 8, 10.1371/journal.pone.0082935
N. Farsad, D. Pan, A. Goldsmith, A novel experimental platform for in-vessel multi-chemical molecular communications, in: IEEE GLOBECOM, 2017, pp. 1–6.
Khaloopour et.al., 2019, An experimental platform for macro-scale fluidic medium molecular communication, IEEE Trans. Mol. Biol. Multi-Scale Commun., 5, 163, 10.1109/TMBMC.2020.2979366
Lee, 2020, In-vessel molecular MIMO communications, 1
H. Unterweger, et al. Experimental molecular communication testbed based on magnetic nanoparticles in duct flow, in: 2018 IEEE 19th SPAWC, pp. 1–5.
Fichera, 2020, Fluorescent nanoparticle-based Internet of things, Nanoscale, 12, 9817, 10.1039/D0NR01365J
Giannoukos, 2017, Molecular communication over gas stream channels using portable mass spectrometry, J. Amer. Soc. Mass Spectrometry, 28, 2371, 10.1007/s13361-017-1752-6
McGuiness, 2018, Parameter analysis in macro-scale molecular communications using advection-diffusion, IEEE Access, 6, 46706, 10.1109/ACCESS.2018.2866679
Koo, 2016, Molecular MIMO: From theory to prototype, IEEE J. Sel. Areas Commun., 34, 600, 10.1109/JSAC.2016.2525538
Zhai, 2018, Anti-ISI demodulation scheme and its experiment-based evaluation for diffusion-based molecular communication, IEEE Trans. Nanobiosci., 17, 126, 10.1109/TNB.2018.2797689
H. Zhai, L. Yang, T. Nakano, Q. Liu, K. Yang, Bio-inspired design and implementation of mobile molecular communication systems at the macroscale, in: IEEE GLOBECOM, 2018, pp. 1–6.
Abbaszadeh et.al., 2019, Mutual information and noise distributions of molecular signals using laser induced fluorescence, 1
Abbaszadeh, 2020, Molecular signal tracking and detection methods in fluid dynamic channels, IEEE Trans. Mol. Biol. Multi-Scale Commun., 6, 151, 10.1109/TMBMC.2020.3009899
J.P. Drees, L. Stratmann, F. Bronner, M. Bartunik, J. Kirchner, H. Unterweger, F. Dressler, Efficient simulation of macroscopic molecular communication: the pogona simulator, in: Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication, 2020, pp. 1–6.
Atakan, 2007, An information theoretical approach for molecular communication, 33
Nakano, 2013, Transmission rate control for molecular communication among biological nanomachines, IEEE J. Sel. Areas Commun., 31, 835, 10.1109/JSAC.2013.SUP2.12130016
Gulec, 2020, Localization of a passive molecular transmitter with a sensor network, 317
Khalid, 2019, Communication through breath: Aerosol transmission, IEEE Commun. Mag., 57, 33, 10.1109/MCOM.2018.1800530
Khalid, 2020, Modeling of viral aerosol transmission and detection, IEEE Trans. Commun., 10.1109/TCOMM.2020.2994191
M. Moore, T. Nakano, A. Enomoto, T. Suda, Measuring distance with molecular communication feedback protocols, in: Proc. ICST BIONETICS, 2010, pp. 1–13.
Moore, 2012, Measuring distance from single spike feedback signals in molecular communication, IEEE Trans. Signal Process., 60, 3576, 10.1109/TSP.2012.2193571
M.J. Moore, T. Nakano, Comparing transmission, propagation, and receiving options for nanomachines to measure distance by molecular communication, in: IEEE ICC, 2012, pp. 6132–6136.
J.-T. Huang, H.-Y. Lai, Y.-C. Lee, C.-H. Lee, P.-C. Yeh, Distance estimation in concentration-based molecular communications, in: IEEE GLOBECOM, 2013, pp. 2587–2591.
Wang, 2015, Distance estimation schemes for diffusion based molecular communication systems, IEEE Commun. Lett., 19, 399, 10.1109/LCOMM.2014.2387826
X. Wang, M.D. Higgins, M.S. Leeson, An algorithmic distance estimation scheme for diffusion based molecular communication systems, in: IEEE ICC, 2015, pp. 1134–1139.
Lin, 2019, High-accuracy distance estimation for molecular communication systems via diffusion, Nano Commun. Netw., 19, 47, 10.1016/j.nancom.2018.11.005
Noel, 2015, Joint channel parameter estimation via diffusive molecular communication, IEEE Trans. Mol. Biol. Multi-Scale Commun., 1, 4, 10.1109/TMBMC.2015.2465511
A. Noel, K.C. Cheung, R. Schober, Bounds on distance estimation via diffusive molecular communication, in: IEEE Global Commun. Conf., GLOBECOM, 2014, pp. 2813–2819.
Gulec, 2020, Distance estimation methods for a practical macroscale molecular communication system, Nano Commun. Netw., 10.1016/j.nancom.2020.100300
Ghosh, 1994, Induced air velocity within droplet driven sprays, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 444, 105
Al Heidary, 2014, Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review, Crop Prot., 63, 120, 10.1016/j.cropro.2014.05.006
Peiris, 2003, The severe acute respiratory syndrome, New England J. Med., 349, 2431, 10.1056/NEJMra032498
Killingley, 2013, Routes of influenza transmission, Influenza and other Respiratory Viruses, 7, 42, 10.1111/irv.12080
Farsad, 2014, Channel and noise models for nonlinear molecular communication systems, IEEE J. Sel. Areas Commun., 32, 2392, 10.1109/JSAC.2014.2367662
Kim, 2015, A universal channel model for molecular communication systems with metal-oxide detectors, 1054
Gulec, 2020, A droplet-based signal reconstruction approach to channel modeling in molecular communication, IEEE Trans. Mol. Biol. Multi-Scale Commun., 1
Sazhin, 2001, A model for fuel spray penetration, Fuel, 80, 2171, 10.1016/S0016-2361(01)00098-9
Mokeba, 1997, Simulating the dynamics of spray droplets in the atmosphere using ballistic and random-walk models combined, J. Wind Eng. Ind. Aerodyn., 67, 923, 10.1016/S0167-6105(97)00129-3
Munson, 2009
2019
Lugg, 1968, Diffusion coefficients of some organic and other vapors in air, Anal. Chem., 40, 1072, 10.1021/ac60263a006
Begg, 2009, Vortex ring-like structures in gasoline fuel sprays under cold-start conditions, Int. J. Engine Res., 10, 195, 10.1243/14680874JER02809