Fluid dynamics-based distance estimation algorithm for macroscale molecular communication

Nano Communication Networks - Tập 28 - Trang 100351 - 2021
Fatih Gulec1, Baris Atakan1
1Izmir Institute of Technology, Department of Electrical and Electronics Engineering, Gulbahce, Urla, Izmir, Turkey

Tài liệu tham khảo

Nakano, 2013 Atakan, 2014 Akyildiz, 2015, The internet of bio-nano things, IEEE Commun. Mag., 53, 32, 10.1109/MCOM.2015.7060516 Atakan, 2012, Body area nanonetworks with molecular communications in nanomedicine, IEEE Commun. Mag., 50, 10.1109/MCOM.2012.6122529 Akyildiz, 2019, Moving forward with molecular communication: From theory to human health applications [point of view], Proc. IEEE, 107, 858, 10.1109/JPROC.2019.2913890 Khan, 2017, Diffusion-based model for synaptic molecular communication channel, IEEE Trans. NanoBiosci., 10.1109/TNB.2017.2707482 Veletić, 2019, Synaptic communication engineering for future cognitive brain–machine interfaces, Proc. IEEE, 107, 1425, 10.1109/JPROC.2019.2915199 Chou, 2019, Designing molecular circuits for approximate maximum a posteriori demodulation of concentration modulated signals, IEEE Trans. Commun., 67, 5458, 10.1109/TCOMM.2019.2913864 Felicetti, 2014, Modeling CD40-based molecular communications in blood vessels, IEEE Trans. NanoBiosci., 13, 230, 10.1109/TNB.2014.2340134 Hamidović, 2019, Passive droplet control in microfluidic networks: A survey and new perspectives on their practical realization, Nano Commun. Netw., 19, 33, 10.1016/j.nancom.2018.10.002 Farsad, 2016, A comprehensive survey of recent advancements in molecular communication, IEEE Commun. Surv. Tut., 18, 1887, 10.1109/COMST.2016.2527741 Farsad, 2013, Tabletop molecular communication: Text messages through chemical signals, PLoS One, 8, 10.1371/journal.pone.0082935 N. Farsad, D. Pan, A. Goldsmith, A novel experimental platform for in-vessel multi-chemical molecular communications, in: IEEE GLOBECOM, 2017, pp. 1–6. Khaloopour et.al., 2019, An experimental platform for macro-scale fluidic medium molecular communication, IEEE Trans. Mol. Biol. Multi-Scale Commun., 5, 163, 10.1109/TMBMC.2020.2979366 Lee, 2020, In-vessel molecular MIMO communications, 1 H. Unterweger, et al. Experimental molecular communication testbed based on magnetic nanoparticles in duct flow, in: 2018 IEEE 19th SPAWC, pp. 1–5. Fichera, 2020, Fluorescent nanoparticle-based Internet of things, Nanoscale, 12, 9817, 10.1039/D0NR01365J Giannoukos, 2017, Molecular communication over gas stream channels using portable mass spectrometry, J. Amer. Soc. Mass Spectrometry, 28, 2371, 10.1007/s13361-017-1752-6 McGuiness, 2018, Parameter analysis in macro-scale molecular communications using advection-diffusion, IEEE Access, 6, 46706, 10.1109/ACCESS.2018.2866679 Koo, 2016, Molecular MIMO: From theory to prototype, IEEE J. Sel. Areas Commun., 34, 600, 10.1109/JSAC.2016.2525538 Zhai, 2018, Anti-ISI demodulation scheme and its experiment-based evaluation for diffusion-based molecular communication, IEEE Trans. Nanobiosci., 17, 126, 10.1109/TNB.2018.2797689 H. Zhai, L. Yang, T. Nakano, Q. Liu, K. Yang, Bio-inspired design and implementation of mobile molecular communication systems at the macroscale, in: IEEE GLOBECOM, 2018, pp. 1–6. Abbaszadeh et.al., 2019, Mutual information and noise distributions of molecular signals using laser induced fluorescence, 1 Abbaszadeh, 2020, Molecular signal tracking and detection methods in fluid dynamic channels, IEEE Trans. Mol. Biol. Multi-Scale Commun., 6, 151, 10.1109/TMBMC.2020.3009899 J.P. Drees, L. Stratmann, F. Bronner, M. Bartunik, J. Kirchner, H. Unterweger, F. Dressler, Efficient simulation of macroscopic molecular communication: the pogona simulator, in: Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication, 2020, pp. 1–6. Atakan, 2007, An information theoretical approach for molecular communication, 33 Nakano, 2013, Transmission rate control for molecular communication among biological nanomachines, IEEE J. Sel. Areas Commun., 31, 835, 10.1109/JSAC.2013.SUP2.12130016 Gulec, 2020, Localization of a passive molecular transmitter with a sensor network, 317 Khalid, 2019, Communication through breath: Aerosol transmission, IEEE Commun. Mag., 57, 33, 10.1109/MCOM.2018.1800530 Khalid, 2020, Modeling of viral aerosol transmission and detection, IEEE Trans. Commun., 10.1109/TCOMM.2020.2994191 M. Moore, T. Nakano, A. Enomoto, T. Suda, Measuring distance with molecular communication feedback protocols, in: Proc. ICST BIONETICS, 2010, pp. 1–13. Moore, 2012, Measuring distance from single spike feedback signals in molecular communication, IEEE Trans. Signal Process., 60, 3576, 10.1109/TSP.2012.2193571 M.J. Moore, T. Nakano, Comparing transmission, propagation, and receiving options for nanomachines to measure distance by molecular communication, in: IEEE ICC, 2012, pp. 6132–6136. J.-T. Huang, H.-Y. Lai, Y.-C. Lee, C.-H. Lee, P.-C. Yeh, Distance estimation in concentration-based molecular communications, in: IEEE GLOBECOM, 2013, pp. 2587–2591. Wang, 2015, Distance estimation schemes for diffusion based molecular communication systems, IEEE Commun. Lett., 19, 399, 10.1109/LCOMM.2014.2387826 X. Wang, M.D. Higgins, M.S. Leeson, An algorithmic distance estimation scheme for diffusion based molecular communication systems, in: IEEE ICC, 2015, pp. 1134–1139. Lin, 2019, High-accuracy distance estimation for molecular communication systems via diffusion, Nano Commun. Netw., 19, 47, 10.1016/j.nancom.2018.11.005 Noel, 2015, Joint channel parameter estimation via diffusive molecular communication, IEEE Trans. Mol. Biol. Multi-Scale Commun., 1, 4, 10.1109/TMBMC.2015.2465511 A. Noel, K.C. Cheung, R. Schober, Bounds on distance estimation via diffusive molecular communication, in: IEEE Global Commun. Conf., GLOBECOM, 2014, pp. 2813–2819. Gulec, 2020, Distance estimation methods for a practical macroscale molecular communication system, Nano Commun. Netw., 10.1016/j.nancom.2020.100300 Ghosh, 1994, Induced air velocity within droplet driven sprays, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 444, 105 Al Heidary, 2014, Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review, Crop Prot., 63, 120, 10.1016/j.cropro.2014.05.006 Peiris, 2003, The severe acute respiratory syndrome, New England J. Med., 349, 2431, 10.1056/NEJMra032498 Killingley, 2013, Routes of influenza transmission, Influenza and other Respiratory Viruses, 7, 42, 10.1111/irv.12080 Farsad, 2014, Channel and noise models for nonlinear molecular communication systems, IEEE J. Sel. Areas Commun., 32, 2392, 10.1109/JSAC.2014.2367662 Kim, 2015, A universal channel model for molecular communication systems with metal-oxide detectors, 1054 Gulec, 2020, A droplet-based signal reconstruction approach to channel modeling in molecular communication, IEEE Trans. Mol. Biol. Multi-Scale Commun., 1 Sazhin, 2001, A model for fuel spray penetration, Fuel, 80, 2171, 10.1016/S0016-2361(01)00098-9 Mokeba, 1997, Simulating the dynamics of spray droplets in the atmosphere using ballistic and random-walk models combined, J. Wind Eng. Ind. Aerodyn., 67, 923, 10.1016/S0167-6105(97)00129-3 Munson, 2009 2019 Lugg, 1968, Diffusion coefficients of some organic and other vapors in air, Anal. Chem., 40, 1072, 10.1021/ac60263a006 Begg, 2009, Vortex ring-like structures in gasoline fuel sprays under cold-start conditions, Int. J. Engine Res., 10, 195, 10.1243/14680874JER02809