Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications

Renewable Energy - Tập 123 - Trang 263-272 - 2018
Daniel Chemisana1, Eduardo F. Férnández2, Alberto Riverola1, Álex Moreno1
1Applied Physics Section of the Environmental Science Department, University of Lleida, Jaume II 69, 25001 Lleida, Spain
2Centre for Advanced Studies on Energy and Environment (CEAEMA), University of Jaén, Las Lagunillas Campus, 23071, Jaen, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Al-Waeli, 2017, Photovoltaic/Thermal (PV/T) systems: status and future prospects, Renew. Sustain. Energy Rev., 77, 109, 10.1016/j.rser.2017.03.126

European Parliament, 2010

da Silva, 2010, Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab, Sol. Energy, 84, 1985, 10.1016/j.solener.2010.10.004

Abrahamyan, 2002, The efficiency of solar cells immersed in liquid dielectrics, Sol. Energy Mater. Sol. Cells, 73, 367, 10.1016/S0927-0248(01)00220-3

Han, 2011, Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids, Appl. Energy, 88, 4481, 10.1016/j.apenergy.2011.05.037

Looser, 2014, Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications, Appl. Energy, 113, 1496, 10.1016/j.apenergy.2013.09.001

Taylor, 2012, Nanofluid-based optical filter optimization for PV/T systems, Light Sci. Appl., 1, e34, 10.1038/lsa.2012.34

Han, 2012, Mechanism study of the electrical performance change of silicon concentrator solar cells immersed in de-ionized water, Energy Convers. Manag., 53, 1, 10.1016/j.enconman.2011.08.011

Han, 2011, Reliability assessment of silicone coated silicon concentrator solar cells by accelerated aging tests for immersing in de-ionized water, Sol. Energy, 85, 2781, 10.1016/j.solener.2011.08.018

Al-Shohani, 2016, Experimental investigation of an optical water filter for Photovoltaic/Thermal conversion module, Energy Convers. Manag., 111, 431, 10.1016/j.enconman.2015.12.065

ASTM, 2004

Vossier, 2017, Is conversion efficiency still relevant to qualify advanced multi-junction solar cells?, Prog. Photovoltaics Res. Appl., 25, 242, 10.1002/pip.2853

Fernández, 2016, Comparative assessment of the spectral impact on the energy yield of high concentrator and conventional photovoltaic technology, Sol. Energy Mater. Sol. Cell., 147, 185, 10.1016/j.solmat.2015.12.003

Gueymard, 2001, Parameterized transmittance model for direct beam and circumsolar spectral irradiance, Sol. Energy, 71, 325, 10.1016/S0038-092X(01)00054-8

Aste, 2015, “Performance analysis of a large-area luminescent solar concentrator module, Renew. Energy, 76, 330, 10.1016/j.renene.2014.11.026

van Sark, 2013, Luminescent solar concentrators - a low cost photovoltaics alternative, Renew. Energy, 49, 207, 10.1016/j.renene.2012.01.030

Ugumori, 1981, Efficiency increase of solar cells operated in dielectric liquid, Jpn. J. Appl. Phys., 20, 77, 10.7567/JJAPS.20S2.77

Wang, 2009, The performance of silicon solar cells operated in liquids, Appl. Energy, 86, 1037, 10.1016/j.apenergy.2008.08.020

Han, 2016, Determination and evaluation of the optical properties of dielectric liquids for concentrating photovoltaic immersion cooling applications, Sol. Energy, 133, 476, 10.1016/j.solener.2016.04.036

Vivar, 2014, A review of optical and thermal transfer fluids used for optical adaptation or beam-splitting in concentrating solar systems, Prog. Photovoltaics Res. Appl., 22, 612, 10.1002/pip.2307

NFPA, 2001

Stenzel, 2005

Green, 1982

Victoria, 2013, Durability of dielectric fluids for concentrating photovoltaic systems, Sol. Energy Mater. Sol. Cell., 113, 31, 10.1016/j.solmat.2013.01.039