Flower-like TiO2-B particles wrapped by graphene with different contents as an anode material for lithium-ion batteries
Tài liệu tham khảo
Chen, 2014, TiO2-B nanosheets/anatase nanocrystals co-anchored on nanoporous graphene: in situ reduction-hydrolysis synthesis and their superior rate performance as an anode material, Chem. Eur. J., 20, 1383, 10.1002/chem.201303734
Guo, 2013, TiO2(B) nanofiber bundles as a high performance anode for a Li-ion battery, RSC Adv., 3, 3352, 10.1039/c2ra23336c
Ren, 2012, Nanoparticulate TiO2(B): an anode for lithium-ion batteries, Angew. Chem. Int. Ed., 51, 2164, 10.1002/anie.201108300
Liu, 2013, A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life, Adv. Mater., 25, 3462, 10.1002/adma.201300953
Armstrong, 2005, Nanotubes with the TiO2-B structure, Chem. Commun., 19, 2454, 10.1039/b501883h
Takami, 2015, Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries, J. Power Sources, 273, 923, 10.1016/j.jpowsour.2014.09.170
Xiang, 2010, Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties, Chem. Commun., 46, 6801, 10.1039/c0cc02327b
Zhao, 2011, Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate, J. Phys. Chem. Solids, 72, 201, 10.1016/j.jpcs.2010.12.014
Giannuzzi, 2014, Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance, ACS Appl. Mater. Interfaces, 6, 1933, 10.1021/am4049833
Huang, 2014, Hierarchically porous nanoflowers from TiO2-B nanosheets with ultrahigh surface area for advanced lithium-ion batteries, J. Phys. Chem. Solids, 75, 619, 10.1016/j.jpcs.2013.12.020
Liu, 2012, Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries, Adv. Mater., 24, 3201, 10.1002/adma.201201036
Lavanya, 2017, Superior photocatalytic performance of graphene wrapped anatase/rutile mixed phase TiO2 nanofibers synthesized by a simple and facile route, J. Environ. Chem. Eng., 5, 494, 10.1016/j.jece.2016.12.025
Tao, 2012, In situ synthesis of TiO2-graphene nanosheets composites as anode materials for high-power lithium ion batteries, Electrochim. Acta, 69, 328, 10.1016/j.electacta.2012.03.022
Wang, 2010, Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes, ACS Nano, 4, 2233, 10.1021/nn901632g
Chen, 2011, Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities, Nanoscale, 3, 2158, 10.1039/c1nr10162e
Geim, 2007, The rise of graphene, Nature Mater., 6, 183, 10.1038/nmat1849
Wang, 2013, In situ fabrication of porous graphene electrodes for high-performance energy storage, ACS Nano, 7, 2422, 10.1021/nn3057388
Yang, 2011, Sandwich-like graphene-based titania nanosheets with high surface area for ultrafast lithium storage, Adv. Mater., 23, 3575, 10.1002/adma.201101599
Zhang, 2013, One-pot solvothermal synthesis of graphene-supported TiO2(B) nanosheets with enhanced lithium storage properties, J. Colloid Interface Sci., 409, 38, 10.1016/j.jcis.2013.07.053
Li, 2014, Graphene nanoscrolls encapsulated TiO2(B) nanowires for lithium storage, J. Power Sources, 268, 372, 10.1016/j.jpowsour.2014.06.056
Hou, 2013, Graphene-TiO2(B) nanowires composite material: Synthesis, characterization and application in lithium-ion batteries, Mater. Lett., 100, 173, 10.1016/j.matlet.2013.03.004
Zhen, 2015, TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries, Chem. Commun., 51, 507, 10.1039/C4CC07446G
Yan, 2015, Ultrafast lithium storage in TiO2-bronze nanowires/N-doped graphene nanocomposites, J. Mater. Chem. A, 3, 4180, 10.1039/C4TA06361A
William, 1958, Preparation of graphite oxide, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017
Etacheri, 2014, Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries, ACS Nano, 8, 1491, 10.1021/nn405534r
Pavasupree, 2005, Synthesis of titanate, TiO2(B), and anatase TiO2 nanofibers from natural rutile sand, J. Solid State Chem., 178, 3110, 10.1016/j.jssc.2005.07.022
Sathish, 2012, Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage, J. Power Sources, 217, 85, 10.1016/j.jpowsour.2012.05.099
Dally, 2012, Morphological dependence of lithium insertion in nanocrystalline TiO2(B) nanoparticles and nanosheets, J. Phys. Chem. Lett., 3, 2015, 10.1021/jz300766a
Dally, 2012, Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B), Langmuir, 28, 2897, 10.1021/la2037229
Shi, 2012, Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties, Colloids Surf. A, 405, 30, 10.1016/j.colsurfa.2012.04.031
Huang, 2013, Construction of sheet-belt hybrid nanostructures from one-dimensional mesoporous TiO2(B) nanobelts and graphene sheets for advanced lithium-ion batteries, J. Mater. Chem. A, 1, 2495, 10.1039/c2ta00593j
Lavanya, 2014, Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO2 nanofibers, J. Alloys Compd., 615, 643, 10.1016/j.jallcom.2014.05.088
Lavanya, 2016, Graphene wrapped porous tubular rutile TiO2 nanofibers with superior interfacial contact for highly efficient photocatalytic performance for water treatment, Sep. Purif. Technol., 168, 284, 10.1016/j.seppur.2016.05.059
Brunauer, 1938, Adsorption of gases in multi-molecular layers, J. Am. Chem. Soc., 60, 309, 10.1021/ja01269a023
Zhou, 2010, One-dimensional single-crystalline Ti–O based nanostructures: properties, synthesis, modifications and applications, J. Mater. Chem., 20, 5993, 10.1039/b927224k
Chen, 2014, A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries, Dalton Trans., 43, 3137, 10.1039/C3DT52661E
Kim, 2012, Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet, J. Phys. Chem. C, 116, 1535, 10.1021/jp209035e
Armstrong, 2005, Lithium-ion intercalation into TiO2-B nanowires, Adv. Mater., 17, 862, 10.1002/adma.200400795
Wang, 2015, Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries, J. Mater. Sci., 50, 6321, 10.1007/s10853-015-9172-0
Wagemaker, 2001, J. Am. Chem. Soc., 123, 11454, 10.1021/ja0161148
Zukalova, 2005, Pseudocapacitive lithium storage in TiO2(B), Chem. Mater., 17, 1248, 10.1021/cm048249t
Liu, 2011, Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries, Adv. Mater., 23, 3450, 10.1002/adma.201100599
Zha, 2014, A minky-dot-fabric-shaped composite of porous TiO2 microsphere/reduced graphene oxide for lithium ion batteries, J. Mater. Chem. A, 2, 16931, 10.1039/C4TA03675A
Bai, 2014, A sandwich structure of mesoporous anatase TiO2 sheets and reduced graphene oxide and its application as lithium-ion battery electrodes, RSC Adv., 4, 43039, 10.1039/C4RA04979A
He, 2013, Graphene/carbon nanospheres sandwich supported PEM fuel cell metal nanocatalysts with remarkably high activity and stability, J. Mater. Chem. A, 1, 2126, 10.1039/C2TA00606E
Yoon, 2011, Hollow core–shell mesoporous TiO2 spheres for lithium ion storage, J. Phys. Chem. C, 115, 9410, 10.1021/jp1123184
Liang, 2009, Dispersion of graphene sheets in organic solvent supported by ionic interactions, Adv. Mater., 21, 1679, 10.1002/adma.200803160