Flower-like TiO2-B particles wrapped by graphene with different contents as an anode material for lithium-ion batteries

Nano-Structures and Nano-Objects - Tập 15 - Trang 216-223 - 2018
Jing-Feng Wang1, Jing-Jing Zhang2, Dan-Nong He1,3
1National Engineering Research Center for Nanotechnology, Shanghai 200241, PR China
2School of Material Science and Engineering, Shanghai University, Shanghai 200072, PR China
3School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China

Tài liệu tham khảo

Chen, 2014, TiO2-B nanosheets/anatase nanocrystals co-anchored on nanoporous graphene: in situ reduction-hydrolysis synthesis and their superior rate performance as an anode material, Chem. Eur. J., 20, 1383, 10.1002/chem.201303734 Guo, 2013, TiO2(B) nanofiber bundles as a high performance anode for a Li-ion battery, RSC Adv., 3, 3352, 10.1039/c2ra23336c Ren, 2012, Nanoparticulate TiO2(B): an anode for lithium-ion batteries, Angew. Chem. Int. Ed., 51, 2164, 10.1002/anie.201108300 Liu, 2013, A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life, Adv. Mater., 25, 3462, 10.1002/adma.201300953 Armstrong, 2005, Nanotubes with the TiO2-B structure, Chem. Commun., 19, 2454, 10.1039/b501883h Takami, 2015, Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries, J. Power Sources, 273, 923, 10.1016/j.jpowsour.2014.09.170 Xiang, 2010, Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties, Chem. Commun., 46, 6801, 10.1039/c0cc02327b Zhao, 2011, Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate, J. Phys. Chem. Solids, 72, 201, 10.1016/j.jpcs.2010.12.014 Giannuzzi, 2014, Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance, ACS Appl. Mater. Interfaces, 6, 1933, 10.1021/am4049833 Huang, 2014, Hierarchically porous nanoflowers from TiO2-B nanosheets with ultrahigh surface area for advanced lithium-ion batteries, J. Phys. Chem. Solids, 75, 619, 10.1016/j.jpcs.2013.12.020 Liu, 2012, Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries, Adv. Mater., 24, 3201, 10.1002/adma.201201036 Lavanya, 2017, Superior photocatalytic performance of graphene wrapped anatase/rutile mixed phase TiO2 nanofibers synthesized by a simple and facile route, J. Environ. Chem. Eng., 5, 494, 10.1016/j.jece.2016.12.025 Tao, 2012, In situ synthesis of TiO2-graphene nanosheets composites as anode materials for high-power lithium ion batteries, Electrochim. Acta, 69, 328, 10.1016/j.electacta.2012.03.022 Wang, 2010, Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes, ACS Nano, 4, 2233, 10.1021/nn901632g Chen, 2011, Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities, Nanoscale, 3, 2158, 10.1039/c1nr10162e Geim, 2007, The rise of graphene, Nature Mater., 6, 183, 10.1038/nmat1849 Wang, 2013, In situ fabrication of porous graphene electrodes for high-performance energy storage, ACS Nano, 7, 2422, 10.1021/nn3057388 Yang, 2011, Sandwich-like graphene-based titania nanosheets with high surface area for ultrafast lithium storage, Adv. Mater., 23, 3575, 10.1002/adma.201101599 Zhang, 2013, One-pot solvothermal synthesis of graphene-supported TiO2(B) nanosheets with enhanced lithium storage properties, J. Colloid Interface Sci., 409, 38, 10.1016/j.jcis.2013.07.053 Li, 2014, Graphene nanoscrolls encapsulated TiO2(B) nanowires for lithium storage, J. Power Sources, 268, 372, 10.1016/j.jpowsour.2014.06.056 Hou, 2013, Graphene-TiO2(B) nanowires composite material: Synthesis, characterization and application in lithium-ion batteries, Mater. Lett., 100, 173, 10.1016/j.matlet.2013.03.004 Zhen, 2015, TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries, Chem. Commun., 51, 507, 10.1039/C4CC07446G Yan, 2015, Ultrafast lithium storage in TiO2-bronze nanowires/N-doped graphene nanocomposites, J. Mater. Chem. A, 3, 4180, 10.1039/C4TA06361A William, 1958, Preparation of graphite oxide, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017 Etacheri, 2014, Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries, ACS Nano, 8, 1491, 10.1021/nn405534r Pavasupree, 2005, Synthesis of titanate, TiO2(B), and anatase TiO2 nanofibers from natural rutile sand, J. Solid State Chem., 178, 3110, 10.1016/j.jssc.2005.07.022 Sathish, 2012, Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage, J. Power Sources, 217, 85, 10.1016/j.jpowsour.2012.05.099 Dally, 2012, Morphological dependence of lithium insertion in nanocrystalline TiO2(B) nanoparticles and nanosheets, J. Phys. Chem. Lett., 3, 2015, 10.1021/jz300766a Dally, 2012, Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B), Langmuir, 28, 2897, 10.1021/la2037229 Shi, 2012, Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties, Colloids Surf. A, 405, 30, 10.1016/j.colsurfa.2012.04.031 Huang, 2013, Construction of sheet-belt hybrid nanostructures from one-dimensional mesoporous TiO2(B) nanobelts and graphene sheets for advanced lithium-ion batteries, J. Mater. Chem. A, 1, 2495, 10.1039/c2ta00593j Lavanya, 2014, Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO2 nanofibers, J. Alloys Compd., 615, 643, 10.1016/j.jallcom.2014.05.088 Lavanya, 2016, Graphene wrapped porous tubular rutile TiO2 nanofibers with superior interfacial contact for highly efficient photocatalytic performance for water treatment, Sep. Purif. Technol., 168, 284, 10.1016/j.seppur.2016.05.059 Brunauer, 1938, Adsorption of gases in multi-molecular layers, J. Am. Chem. Soc., 60, 309, 10.1021/ja01269a023 Zhou, 2010, One-dimensional single-crystalline Ti–O based nanostructures: properties, synthesis, modifications and applications, J. Mater. Chem., 20, 5993, 10.1039/b927224k Chen, 2014, A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries, Dalton Trans., 43, 3137, 10.1039/C3DT52661E Kim, 2012, Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet, J. Phys. Chem. C, 116, 1535, 10.1021/jp209035e Armstrong, 2005, Lithium-ion intercalation into TiO2-B nanowires, Adv. Mater., 17, 862, 10.1002/adma.200400795 Wang, 2015, Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries, J. Mater. Sci., 50, 6321, 10.1007/s10853-015-9172-0 Wagemaker, 2001, J. Am. Chem. Soc., 123, 11454, 10.1021/ja0161148 Zukalova, 2005, Pseudocapacitive lithium storage in TiO2(B), Chem. Mater., 17, 1248, 10.1021/cm048249t Liu, 2011, Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries, Adv. Mater., 23, 3450, 10.1002/adma.201100599 Zha, 2014, A minky-dot-fabric-shaped composite of porous TiO2 microsphere/reduced graphene oxide for lithium ion batteries, J. Mater. Chem. A, 2, 16931, 10.1039/C4TA03675A Bai, 2014, A sandwich structure of mesoporous anatase TiO2 sheets and reduced graphene oxide and its application as lithium-ion battery electrodes, RSC Adv., 4, 43039, 10.1039/C4RA04979A He, 2013, Graphene/carbon nanospheres sandwich supported PEM fuel cell metal nanocatalysts with remarkably high activity and stability, J. Mater. Chem. A, 1, 2126, 10.1039/C2TA00606E Yoon, 2011, Hollow core–shell mesoporous TiO2 spheres for lithium ion storage, J. Phys. Chem. C, 115, 9410, 10.1021/jp1123184 Liang, 2009, Dispersion of graphene sheets in organic solvent supported by ionic interactions, Adv. Mater., 21, 1679, 10.1002/adma.200803160