Flow field effect of delayed neutron precursors in liquid-fueled molten salt reactors

Nuclear Science and Techniques - Tập 33 - Trang 1-17 - 2022
Xian-Di Zuo1,2, Mao-Song Cheng1,2, Yu-Qing Dai1,2, Kai-Cheng Yu1,2, Zhi-Min Dai1,2
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
2University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

In molten salt reactors (MSRs), the liquid fuel salt circulates through the primary loop and a part of the delayed neutron precursors (DNPs) decays outside the reactor core. To model and analyze the flow field effect of DNPs in channel-type liquid-fueled MSRs, a three-dimensional space-time dynamics code, named ThorCORE3D, that couples neutronics, core thermal-hydraulics, and a molten salt loop system was developed and validated with the Molten Salt Reactor Experiment (MSRE) benchmarks. The effects of external loop recirculation time, fuel flow rate, and core flow field distribution on the delayed neutron fraction loss of MSRE at steady-state were modeled and simulated using the ThorCORE3D code. Then, the flow field effect of the DNPs on the system responses of the MSRE in the reactivity insertion transient under different initial conditions was analyzed systematically for the channel-type liquid-fueled MSRs. The results indicate that the flow field condition has a significant effect on the steady-state delayed neutron fractions and will further affect the transient power and temperature responses of the reactor system. The analysis results for the effect of the DNP flow field can provide important references for the design optimization and safety analysis of liquid-fueled MSRs.

Tài liệu tham khảo

D.L. Zhang, L.M. Liu, M.H. Liu et al., Review of conceptual design and fundamental research of molten salt reactors in China. Int. J. Energy Res. 42(5), 1834 (2018). https://doi.org/10.1002/er.3979 G. Lapenta, F. Mattioda, P. Ravetto, Point kinetic model for fluid fuel systems. Ann. Nucl. Energy 28, 1759–1772 (2001). https://doi.org/10.1016/S0306-4549(01)00012-3 C.B. Shi, M.S. Cheng, G.M. Liu, Extending and verification of RELAP5 code for liquid fueled molten salt reactor. Nucl. Power Eng. 37, 16–20 (2016). https://doi.org/10.13832/j.jnpe.2016.03.0016 R. Li, M.S. Cheng, Z.M. Dai, Improvement and validation of the delayed neutron precursor transport model in RELAP5 code for liquid fuel molten salt reactor. Nucl. Tech. 44(6), 060603 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.060603. (in Chinese) R.C. Diniz, F.S. da Rosa, A.C. da Gonçalves, Calculation of delayed neutron precursors’ transit time in the external loop during a flow velocity transient in a Molten Salt Reactors. Ann. Nucl. Energy 165, 108640 (2022). https://doi.org/10.1016/j.anucene.2021.108640 G.F. Zhu, R. Yan, H.H. Pengu et al., Application of Monte Carlo method to calculate the effective delayed neutron fraction in molten salt reactor. Nucl. Sci. Tech. 30, 34 (2019). https://doi.org/10.1007/s41365-019-0557-7 M. Aufiero, M. Brovchenko, A. Cammi et al., Calculating the effective delayed neutron fraction in the Molten Salt Fast Reactor: analytical, deterministic and Monte Carlo approaches. Ann. Nucl. Energy 65, 78–90 (2014). https://doi.org/10.1016/j.anucene.2013.10.015 J. Křepel, U. Rohde, U. Grundmann et al., DYN3D-MSR spatial dynamics code for molten salt reactors. Ann. Nucl. Energy 34, 449–462 (2007). https://doi.org/10.1016/j.anucene.2006.12.011 K. Zhuang, L.Z. Cao, Y.Q. Zheng et al., Studies on the molten salt reactor: code development and neutronics analysis of MSRE-type design. J. Nucl. Sci. Technol. 52, 251–263 (2015). https://doi.org/10.1080/00223131.2014.944240 L. Z. Cao, K. Zhuang, Y. Q. Zheng et al., Transient analysis for liquid-fuel molten salt reactor based on MOREL2.0 code. Int. J Energy Res. 42, 261–275 (2018). https://doi.org/10.1002/er.3828 D.L. Zhang, Z.G. Zhai, X.N. Chen et al., COUPLE, A coupled neutronics and thermal- hydraulics code for transient analyses of Molten Salt Reactors. Transactions 108(1), 921–922 (2013) D.L. Zhang, Z.G. Zhai, A. Rineiski et al, COUPLE, A time-dependent coupled neutronics and thermal-hydraulics code, and its application to MSFR, in Proceedings of the 2014 22nd International Conference on Nuclear Engineering. https://doi.org/10.1115/ICONE22-30609 D.L. Zhang, L.M. Liu, M.H. Liu et al., Neutronics/thermal-hydraulics coupling analysis for the liquid-fuel MOSART concept. Energy Procedia 127, 343–351 (2017). https://doi.org/10.1016/j.egypro.2017.08.075 A. Cammi, V. Di Marcello, L. Luzzi et al., A multi-physics modelling approach to the dynamics of Molten Salt Reactors. Ann. Nucl. Energy 38, 1356 (2011). https://doi.org/10.1016/j.anucene.2011.01.037 M. Zanetti, A. Cammi, C. Fiorina et al., A geometric multiscale modelling approach to the analysis of MSR plant dynamics. Prog. Nucl. Energy 83, 82 (2015). https://doi.org/10.1016/j.pnucene.2015.02.014 C. Fiorina, D. Lathouwers, M. Aufiero et al., Modelling and analysis of the MSFR transient behaviour. Ann. Nucl. Energy 64, 485 (2014). https://doi.org/10.1016/j.anucene.2013.08.003 E. Cervi, S. Lorenzi, L. Luzzi et al., Multiphysics analysis of the MSFR helium bubbling system: a comparison between neutron diffusion, SP3 neutron transport and Monte Carlo approaches. Ann. Nucl. Energy 132, 227 (2019). https://doi.org/10.1016/j.anucene.2019.04.029 P. German, M. Tano, C. Fiorina et al., GeN-ROM-An OpenFOAM-based multiphysics reduced-order modeling framework for the analysis of Molten Salt Reactors. Prog. Nucl. Energy 146, 104148 (2022). https://doi.org/10.1016/j.pnucene.2022.104148 M. Tiberga, D. Lathouwers, J.L. Kloosterman, A multi-physics solver for liquid-fueled fast systems based on the discontinuous Galerkin FEM discretization. Prog. Nucl. Energy 127, 103427 (2020). https://doi.org/10.1016/j.pnucene.2020.103427 S.M. Park, M. Munk, Verification of moltres for multiphysics simulations of fast-spectrum molten salt reactors. Ann. Nucl. Energy 173, 109111 (2022). https://doi.org/10.1016/j.anucene.2022.109111 G. Yang, M.K. Jaradat, W.S. Yang et al., Development of coupled PROTEUS-NODAL and SAM code system for multiphysics analysis of molten salt reactors. Ann. Nucl. Energy 165, 108889 (2022). https://doi.org/10.1016/j.anucene.2021.108889 D.L. Zhang, S.Z. Qiu, G.H. Su et al., Development of a steady state analysis code for a molten salt reactor. Ann. Nucl. Energy 36, 590–603 (2009). https://doi.org/10.1016/j.anucene.2009.01.004 X.D. Zuo, M.S. Cheng, Z.M. Dai, Development and validation of a three-dimensional dynamics code for liquid-fueled molten salt reactors. Nucl. Tech. 45(3), 030603 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.030603. (in Chinese) M.S. Cheng, M. Lin, X.D. Zuo et al., Development and validation of a three-dimensional hexagonal nodal time-spatial kinetics code based on exponential transform. Nucl. Tech. 41(6), 060604 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.060604. (in Chinese) D.L. Zhang, S.Z. Qiu, C.L. Liu et al., Nuclear calculation and program development for Molten Salt Reactor. At. Energy Sci. Technol. 42(12), 1103–1108 (2008). https://doi.org/10.7538/yzk.2008.42.12.1103. (in Chinese) G. Marleau, A. Hébert, R. Roy, A user guide for dragon version 4. Institute of Genius Nuclear, Department of Genius Mechanical, School Polytechnic of Montreal, 2011 Bilinear interpolation, https://en.wikipedia.org/wiki/Bilinear_interpolation; 2022 U. Grundmann, U. Rohde, S. Mittag et al., DYN3D version 3.2-code for calculation of transients in light water reactors (LWR) with hexagonal or quadratic fuel elements-description of models and methods, Forschungszentrum Rossendorf (2005) B.E. Prince, S.J. Ball, J.R. Engel et al., Zero-power physics experiments on the molten-salt reactor experiment. Oak Ridge National Laboratory (1968). https://doi.org/10.2172/4558029 M.W. Rosenthal, R.B. Briggs, P.R. Kasten, Molten-Salt reactor program semiannual progress report for period ending February 28, 1969. Oak Ridge National Laboratory (1969). https://doi.org/10.2172/4780471 R.B. Briggs, Molten-salt reactor program semiannual progress report for period ending July 31, 1964, Oak Ridge National Laboratory (1964). https://doi.org/10.2172/4676587 R.C. StefYy, P.J. Wood, Theoretical dynamic anatysis of the MSRE with 233-U fuel. Oak Ridge National Laboratory (1969). https://doi.org/10.2172/4771215 M. Delpech, S. Dulla, C. Garzenne et al, Benchmark of dynamic simulation tools for molten salt reactors, in: GLOBAL 2003-Nuclear Science and Technology: Meeting the Global Industrial and R &D Challenges of the 21st Century, American Nuclear Society. pp. 2182-2187(2003) R.C. Steffy, Experimental dynamic analysis of the MSRE with 233-U fuel. Oak Ridge National Laboratory (1969). https://doi.org/10.2172/4132458