Flexible thermoelectric materials and devices
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fitriani, 2016, A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery, Renew. Sust. Energ. Rev., 64, 635, 10.1016/j.rser.2016.06.035
Yang, 2009, Automotive applications of thermoelectric materials, J. Electron. Mater., 38, 1245, 10.1007/s11664-009-0680-z
Seebeck, 1822, Magnetische polarisation der metalle und erze durch temperatur-differenz, Abh. Akad. Wiss. Berlin, 1820–21, 289
Rowe, 1995
Li, 2010, High-performance nanostructured thermoelectric materials, NPG Asia Mater., 2, 152, 10.1038/asiamat.2010.138
Du, 2015, Thermoelectric fabrics: toward power generating clothing, Sci. Rep., 5, 6144, 10.1038/srep06411
He, 2017, Advances in thermoelectric materials research: looking back and moving forward, Science, 357, 6358, 10.1126/science.aak9997
Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012
Poudel, 2008, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320, 634, 10.1126/science.1156446
Harman, 2005, Nanostructured thermoelectric materials, J. Electron. Mater., 34, 19, 10.1007/s11664-005-0083-8
Amatya, 2012, Trend for thermoelectric materials and their earth abundance, J. Electron. Mater., 41, 1011, 10.1007/s11664-011-1839-y
Pu, 2016, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators, Adv. Mater., 28, 98, 10.1002/adma.201504403
Scholdt, 2010, Organic semiconductors for thermoelectric applications, J. Electron. Mater., 39, 1589, 10.1007/s11664-010-1271-8
Kim, 2013, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Nat. Mater., 12, 719, 10.1038/nmat3635
Bubnova, 2011, Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene), Nat. Mater., 10, 429, 10.1038/nmat3012
Bubnova, 2012, Towards polymer-based organic thermoelectric generators, Energy Environ. Sci., 5, 9345, 10.1039/c2ee22777k
Yakuphanoglu, 2008, Electrical conductivity, thermoelectric power, and optical properties of organo-soluble polyaniline organic semiconductor, J. Electron. Mater., 37, 930, 10.1007/s11664-008-0404-9
Kemp, 2006, Effect of ammonia on the temperature-dependent conductivity and thermopower of polypyrrole, J. Polym. Sci. B: Polym. Phys., 44, 1331, 10.1002/polb.20792
Tang, 2017, Notably enhanced thermoelectric properties of lamellar polypyrrole by doping with β-naphthalene sulfonic acid, RSC Adv., 7, 20192, 10.1039/C7RA02302B
Du, 2012, Research progress on polymer-inorganic thermoelectric nanocomposite materials, Prog. Polym. Sci., 37, 820, 10.1016/j.progpolymsci.2011.11.003
Yao, 2010, Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites, ACS Nano, 4, 2445, 10.1021/nn1002562
Meng, 2010, A promising approach to enhanced thermoelectric properties using carbon nanotube networks, Adv. Mater., 22, 535, 10.1002/adma.200902221
Du, 2014, Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films, Appl. Mater. Interfaces, 6, 5735, 10.1021/am5002772
Wan, 2015, Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2, Nat. Mater., 14, 622, 10.1038/nmat4251
Tian, 2017, A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices, J. Mater. Chem. A, 5, 564, 10.1039/C6TA08838D
Zhang, 2014, Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently, Adv. Mater., 26, 6829, 10.1002/adma.201305371
Bahk, 2015, Flexible thermoelectric materials and device optimization for wearable energy harvesting, J. Mater. Chem. C, 3, 10362, 10.1039/C5TC01644D
Gao, 2016, Conducting polymer/carbon particle thermoelectric composites: emerging green energy materials, Compos. Sci. Technol., 124, 52, 10.1016/j.compscitech.2016.01.014
Blackburn, 2018, Carbon-nanotube-based thermoelectric materials and devices, Adv. Mater., 30, 1704386, 10.1002/adma.201704386
Pichanusakorn, 2010, Nanostructured thermoelectrics, Mater. Sci. Eng. R, 67, 19, 10.1016/j.mser.2009.10.001
Francioso, 2017, Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator, Energy Convers. Manage., 145, 204, 10.1016/j.enconman.2017.04.096
Lee, 2013, Development of thermoelectric inks for the fabrication of printable thermoelectric generators used in mobile wearable health monitoring systems, SPIE, 8691
Heremans, 2013, When thermoelectrics reached the nanoscale, Nat. Nanotechnol., 8, 471, 10.1038/nnano.2013.129
Chung, 2000, CsBi4Te6: a high-performance thermoelectric material for low-temperature applications, Science, 287, 1024, 10.1126/science.287.5455.1024
Glatz, 2006, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator, Sens. Actuators A, 132, 337, 10.1016/j.sna.2006.04.024
Francioso, 2011, Flexible thermoelectric generator for ambient assisted living wearable biometric sensors, J. Power Sources, 196, 3239, 10.1016/j.jpowsour.2010.11.081
Li, 2017, Thermoelectric properties of flexible PEDOT: PSS/polypyrrole/paper nanocomposite films, Materials, 10, 780, 10.3390/ma10070780
Li, 2017, PEDOT-based thermoelectric nanocomposites – a mini-review, Synth. Met., 226, 119, 10.1016/j.synthmet.2017.02.007
Lay, 2017, Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices, Carbohydr. Polym., 165, 86, 10.1016/j.carbpol.2017.02.043
Sun, 2015, Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices, J. Mater. Sci.: Mater. Electron., 26, 4438
Stepien, 2016
Du, 2013, The thermoelectric performance of carbon black/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) composite films, J. Mater. Sci.: Mater. Electron., 24, 1702
Kim, 2002, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synth. Met., 126, 311, 10.1016/S0379-6779(01)00576-8
Stepien, 2016, Investigation of the thermoelectric power factor of KOH-treated PEDOT: PSS dispersions for printing applications, Energy Harvest. Syst., 3, 101, 10.1515/ehs-2014-0060
Chang, 2009, The thermoelectric performance of poly(3,4-ethylenedioxythiophene)/poly (4-styrenesulfonate) thin films, J. Electron. Mater., 38, 1182, 10.1007/s11664-009-0821-4
Liu, 2015, The optimization of thermoelectric properties in a PEDOT:PSS thin film through post-treatment, RSC Adv., 5, 1910, 10.1039/C4RA09147G
Fan, 2016, Significant enhancement in the thermoelectric properties of PEDOT:PSS films through a treatment with organic solutions of inorganic salts, ACS Appl. Mater. Interfaces, 8, 23204, 10.1021/acsami.6b07234
Luo, 2013, Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment, J. Mater. Chem. A, 1, 7576, 10.1039/c3ta11209h
Fan, 2017, Higher PEDOT molecular weight giving rise to higher thermoelectric property of PEDOT:PSS: a comparative study of clevios P and Clevios PH1000, ACS Appl. Mater. Interfaces, 9, 11732, 10.1021/acsami.6b15158
Zhu, 2015, An effective approach to enhanced thermoelectric properties of PEDOT:PSS films by a DES post-treatment, J. Polym. Sci. B: Polym. Phys., 53, 885, 10.1002/polb.23718
Kim, 2014, Highly conductive PEDOT:PSS Nanofibrils induced by solution-processed crystallization, Adv. Mater., 26, 2268, 10.1002/adma.201304611
Kim, 2016, Sulfuric acid vapor treatment for enhancing the thermoelectric properties of PEDOT: PSS thin-films, J. Mater. Sci.: Mater. Electron., 27, 6122
Fan, 2017, Significantly enhanced thermoelectric properties of PEDOT: PSS films through sequential post-treatments with common acids and bases, Adv. Energy Mater., 7, 1602116, 10.1002/aenm.201602116
Cho, 2014, Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity, Nano Lett., 14, 3321, 10.1021/nl500748y
Tsukamoto, 1990, Structure and electrical properties of polyacetylene yielding a conductivity of 105S/cm, Jpn. J. Appl. Phys., 29, 125, 10.1143/JJAP.29.125
Yamaguchi, 2010, Synthesis of n-type π-conjugated polymers with pendant crown ether and their stability of n-doping state against air, Macromolecules, 43, 9348, 10.1021/ma101731v
Sun, 2012, Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s, Adv. Mater., 24, 932, 10.1002/adma.201104305
Russ, 2014, Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design, Adv. Mater., 26, 3473, 10.1002/adma.201306116
Schlitz, 2014, Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications, Adv. Mater., 26, 2825, 10.1002/adma.201304866
Wang, 2016, Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers, Adv. Mater., 28, 10764, 10.1002/adma.201603731
Shi, 2015, Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones, J. Am. Chem. Soc., 137, 6979, 10.1021/jacs.5b00945
Zhao, 2017, High conductivity and electron-transfer validation in an n-type fluoride-anion-doped polymer for thermoelectrics in air, Adv. Mater., 29, 1606928, 10.1002/adma.201606928
Zuo, 2018, High seebeck coefficient and power factor in n-type organic thermoelectrics, Adv. Electron. Mater., 4, 1700501, 10.1002/aelm.201700501
Zuo, 2018, High thermoelectric power factor from multilayer solution-processed organic films, Appl. Phys. Lett., 112, 083303, 10.1063/1.5016908
Wang, 2018, A chemically doped naphthalenediimide-bithiazole polymer for n-type organic thermoelectrics, Adv. Mater., 1801898, 10.1002/adma.201801898
Sun, 2016, Flexible n-type high-performance thermoelectric thin films of poly (nickel-ethylenetetrathiolate) prepared by an electrochemical method, Adv. Mater., 28, 3351, 10.1002/adma.201505922
See, 2010, Water-processable polymer-nanocrystal hybrids for thermoelectrics, Nano Lett., 10, 4664, 10.1021/nl102880k
Song, 2016, Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4, J. Nanopart. Res., 18, 386, 10.1007/s11051-016-3701-x
Song, 2017, Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator, Energy, 125, 519, 10.1016/j.energy.2017.01.037
Zhang, 2010, Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites, ACS Appl. Mater. Interfaces, 2, 3170, 10.1021/am100654p
Du, 2012, Influence of sintering temperature on thermoelectric properties of Bi2Te3/Polythiophene composite materials, J. Mater. Sci.: Mater. Electron., 23, 870
Zhang, 2017, Mechanically durable and flexible thermoelectric films from PEDOT:PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites, Adv. Electron. Mater., 3, 1600554, 10.1002/aelm.201600554
Xiong, 2016, Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types, J. Mater. Sci.: Mater. Electron., 27, 1769
Ju, 2016, Chemically exfoliated SnSe nanosheets and their SnSe/poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) composite films for polymer based thermoelectric applications, ACS Nano, 10, 5730, 10.1021/acsnano.5b07355
Ju, 2016, Fabrication of conductive polymer/inorganic nanoparticles composite films: PEDOT:PSS with exfoliated tin selenide nanosheets for polymer-based thermoelectric devices, Chem. Eng. J., 297, 66, 10.1016/j.cej.2016.03.137
Du, 2012, Preparation and characterization of multiwalled carbon nanotube/poly(3-hexylthiophene) thermoelectric composite materials, Synth. Met., 162, 375, 10.1016/j.synthmet.2011.12.023
Wang, 2015, Thermally driven large n-type voltage responses from hybrids of carbon nanotubes and poly (3,4-ethylenedioxythiophene) with tetrakis (dimethylamino) ethylene, Adv. Mater., 27, 6855, 10.1002/adma.201502950
Wang, 2016, Influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI composite films, Org. Electron., 39, 146, 10.1016/j.orgel.2016.09.008
Wang, 2017, Thermoelectric properties of the PEDOT/SWCNT composite films prepared by a vapor phase polymerization, Synth. Met., 224, 27, 10.1016/j.synthmet.2016.11.031
Chen, 2017, Strong anisotropy in thermoelectric properties of CNT/PANI composites, Carbon, 114, 1, 10.1016/j.carbon.2016.11.074
Du, 2012, Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite, Synth. Met., 161, 2688, 10.1016/j.synthmet.2011.09.044
Du, 2012, Preparation and characterization of graphene nanosheets/poly(3-hexylthiophene) thermoelectric composite materials, Synth. Met., 162, 2102, 10.1016/j.synthmet.2012.09.011
Wang, 2017, Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor, ACS Appl. Mater. Interfaces, 9, 20124, 10.1021/acsami.7b05357
Wan, 2017, Ultrahigh thermoelectric power factor in flexible hybrid inorganic–organic superlattice, Nat. Commun., 8, 1024, 10.1038/s41467-017-01149-4
Wan, 2015, Dielectric mismatch mediates carrier mobility in organic-intercalated layered TiS2, Nano Lett., 15, 6302, 10.1021/acs.nanolett.5b01013
Jin, 2017, Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin films, J. Mater. Sci., 52, 6093, 10.1007/s10853-017-0848-5
Giri, 2016, Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices, Phys. Rev. B, 93, 024201, 10.1103/PhysRevB.93.024201
Giri, 2016, Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices, Phys. Rev. B, 93, 115310, 10.1103/PhysRevB.93.115310
Karttunen, 2017, Flexible thermoelectric ZnO–organic superlattices on cotton textile substrates by ALD/MLD, Adv. Electron. Mater., 3, 1600459, 10.1002/aelm.201600459
Yu, 2008, Thermoelectric behavior of segregated-network polymer nanocomposites, Nano Lett., 8, 4428, 10.1021/nl802345s
Chen, 2017, Bendable n-type metallic nanocomposites with large thermoelectric power factor, Adv. Mater., 29, 1604752, 10.1002/adma.201604752
Du, 2018, Flexible n-type tungsten carbide/polylactic acid thermoelectric composites fabricated by additive manufacturing, Coatings, 8, 25, 10.3390/coatings8010025
Zhou, 2015, Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires, ACS Appl. Mater. Interfaces, 7, 21015, 10.1021/acsami.5b07144
Ju, 2018, Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe0.8S0.2 nanosheets/carbon nanotubes for wearable electronic applications, J. Mater. Chem. A, 6, 5627, 10.1039/C7TA11285H
McGrail, 2015, Polymer composites for thermoelectric applications, Angew. Chem. Int. Ed., 54, 1710, 10.1002/anie.201408431
Hicks, 1993, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B: Condens. Matter, 47, 12727, 10.1103/PhysRevB.47.12727
Hicks, 1993, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B: Condens. Matter, 47, 16631, 10.1103/PhysRevB.47.16631
Nuthongkum, 2017, RSM base study of the effect of argon gas flow rate and annealing temperature on the [Bi]:[Te] ratio and thermoelectric properties of flexible Bi-Te thin film, J. Electron. Mater., 46, 2900, 10.1007/s11664-016-5024-1
Nuthongkum, 2017, [Bi]:[Te] control, structural and thermoelectric properties of flexible BixTey thin films prepared by RF magnetron sputtering at different sputtering pressures, J. Electron. Mater., 46, 6444, 10.1007/s11664-017-5671-x
Fan, 2014, Thermoelectric properties of zinc antimonide thin film deposited on flexible polyimide substrate by RF magnetron sputtering, J. Mater. Sci.: Mater. Electron., 25, 5060
Goncalves, 2010, Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation, Thin Solid Films, 518, 2816, 10.1016/j.tsf.2009.08.038
Goncalves, 2008, Optimization of Bi2Te3 and Sb2Te3 thin films deposited by co-evaporation on polyimide for thermoelectric applications, Vacuum, 82, 1499, 10.1016/j.vacuum.2008.03.076
Goncalves, 2011, Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications, Thin Solid Films, 519, 4152, 10.1016/j.tsf.2011.01.395
Yang, 2017, Thermoelectric characteristics of γ-Ag2Te nanoparticle thin films on flexible substrates, Thin Solid Films, 641, 65, 10.1016/j.tsf.2017.01.068
Lee, 2011, Thermoelectric properties of screen-printed ZnSb film, Thin Solid Films, 519, 5441, 10.1016/j.tsf.2011.03.031
Shen, 2017, Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering, Appl. Surf. Sci., 414, 197, 10.1016/j.apsusc.2017.04.074
Wang, 1993, Electronic transport properties of KxC70 thin films, Phys. Rev. B, 48, 10657, 10.1103/PhysRevB.48.10657
Zhao, 2012, Flexible carbon nanotube papers with improved thermoelectric properties, Energy Environ. Sci., 5, 5364, 10.1039/C1EE01931G
Choi, 2014, Enhanced thermoelectric properties of the flexible tellurium nanowire film hybridized with single-walled carbon nanotube, Synth. Met., 198, 340, 10.1016/j.synthmet.2014.10.037
Choi, 2015, Enhanced thermopower in flexible tellurium nanowire films doped using single-walled carbon nanotubes with a rationally designed work function, Carbon, 94, 577, 10.1016/j.carbon.2015.07.043
Gao, 2016, Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films for thermoelectrics, RSC Adv., 6, 31580, 10.1039/C6RA00916F
Yu, 2012, Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes, Energy Environ. Sci., 5, 9481, 10.1039/c2ee22838f
Nonoguchi, 2013, Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants, Sci. Rep., 3, 3344, 10.1038/srep03344
Brownlie, 2018, Advances in carbon nanotube n-type doping: methods, analysis and applications, Carbon, 126, 257, 10.1016/j.carbon.2017.09.107
Zhao, 2014, n-Type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of merit, ACS Appl. Mater. Interfaces, 6, 4940, 10.1021/am4059167
Paul, 2017, Nanostructural tailoring to induce flexibility in thermoelectric Ca3Co4O9 thin films, ACS Appl. Mater. Interfaces, 9, 25308, 10.1021/acsami.7b06301
Paul, 2015, Mechanism of formation of the thermoelectric layered cobaltate Ca3Co4O9 by annealing of CaO–CoO thin films, Adv. Electron. Mater., 1, 371, 10.1002/aelm.201400022
Paul, 2018, Nanoporous Ca3Co4O9 thin films for transferable thermoelectrics, ACS Appl. Energy Mater., 1, 2261, 10.1021/acsaem.8b00333
Yang, 2017, Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film, Nat. Commun., 8, 16076, 10.1038/ncomms16076
Eklund, 2017, Layered ternary Mn+1AXn phases and their 2D derivative MXene: an overview from a thin-film perspective, J. Phys. D: Appl. Phys., 50, 113001, 10.1088/1361-6463/aa57bc
Novoselov, 2004, Electric field effect in atomically thin carbon films, science, 306, 666, 10.1126/science.1102896
Zhang, 2013, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies, Chem. Soc. Rev., 42, 8187, 10.1039/c3cs60138b
Tang, 2013, Graphene-analogous low-dimensional materials, Prog. Mater. Sci., 58, 1244, 10.1016/j.pmatsci.2013.04.003
Bhimanapati, 2015, Recent advances in two-dimensional materials beyond graphene, ACS Nano, 9, 11509, 10.1021/acsnano.5b05556
Voiry, 2015, Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev., 44, 2702, 10.1039/C5CS00151J
Nicolosi, 2013, Liquid exfoliation of layered materials, Science, 340, 1226419, 10.1126/science.1226419
Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975
Acerce, 2015, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nat. Nanotechnol., 10, 313, 10.1038/nnano.2015.40
Kappera, 2014, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors, Nat. Mater., 13, 1128, 10.1038/nmat4080
Huang, 2016, Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting, Nano Energy, 26, 172, 10.1016/j.nanoen.2016.05.022
Chen, 2015, Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes, J. Phys. Chem. C, 119, 26706, 10.1021/acs.jpcc.5b06728
Yang, 2017, Earth-abundant and non-toxic SiX (X=S, Se) monolayers as highly efficient thermoelectric materials, J. Phys. Chem. C, 121, 123, 10.1021/acs.jpcc.6b10163
Wang, 2015, Thermoelectric properties of single-layered SnSe sheet, Nanoscale, 7, 15962, 10.1039/C5NR03813H
Sharma, 2016, Thermoelectric response in single quintuple layer Bi2Te3, ACS Energy Lett., 1, 875, 10.1021/acsenergylett.6b00289
Kumar, 2015, Thermoelectric response of bulk and monolayer MoSe2 and WSe2, Chem. Mater., 27, 1278, 10.1021/cm504244b
Gandi, 2014, WS2 as an excellent high-temperature thermoelectric material, Chem. Mater., 26, 6628, 10.1021/cm503487n
Mahan, 1996, The best thermoelectric, Proc. Natl. Acad. Sci. U.S.A., 93, 7436, 10.1073/pnas.93.15.7436
Curtarolo, 2013, The high-throughput highway to computational materials design, Nat. Mater., 12, 191, 10.1038/nmat3568
Madsen, 2006, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun., 175, 67, 10.1016/j.cpc.2006.03.007
Eklund, 2016, Transition-metal-nitride-based thin films as novel energy harvesting materials, J. Mater. Chem. C, 4, 3905, 10.1039/C5TC03891J
Yang, 2016, On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective, NPJ Comput. Mater., 2, 15015, 10.1038/npjcompumats.2015.15
Gorai, 2017, Computationally guided discovery of thermoelectric materials, Nat. Rev. Mater., 2, 17053, 10.1038/natrevmats.2017.53
Singh, 2017, Experimental and theoretical investigations of thermoelectric properties of La0.82Ba0.18CoO3 compound in high temperature region, Phys. Lett. A, 381, 3101, 10.1016/j.physleta.2017.07.034
Naguib, 2014, 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138
Ng, 2017, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications, J. Mater. Chem. A, 5, 3039, 10.1039/C6TA06772G
Anasori, 2017, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2, 16098, 10.1038/natrevmats.2016.98
Naguib, 2011, Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4207, 10.1002/adma.201190147
Ghidiu, 2014, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970
Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502, 10.1126/science.1241488
Qin, 2018, High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS, Adv. Funct. Mater., 28, 1703808, 10.1002/adfm.201703808
Tao, 2017, Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering, Nat. Commun., 8, 14949, 10.1038/ncomms14949
Zha, 2016, The thermal and electrical properties of the promising semiconductor MXene Hf2CO2, Sci. Rep.-UK, 6, 27971, 10.1038/srep27971
Fashandi, 2015, Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides, Phys. Rev. B, 92, 155142, 10.1103/PhysRevB.92.155142
Ando, 2015, First-principles study of metal–insulator control by ion adsorption on Ti2C MXene dioxide monolayers, Appl. Phys. Express, 9, 015001, 10.7567/APEX.9.015001
Weng, 2015, Large-gap two-dimensional topological insulator in oxygen functionalized MXene, Phys. Rev. B, 92, 075436, 10.1103/PhysRevB.92.075436
Khazaei, 2016, Topological insulators in the ordered double transition metals M2′M″C2 MXenes (M′=Mo, W; M″=Ti, Zr, Hf), Phys. Rev. B, 94, 125152, 10.1103/PhysRevB.94.125152
Khazaei, 2017, Electronic properties and applications of MXenes: a theoretical review, J. Mater. Chem. C, 5, 2488, 10.1039/C7TC00140A
Khazaei, 2014, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family, Phys. Chem. Chem. Phys., 16, 7841, 10.1039/C4CP00467A
Gandi, 2016, Thermoelectric performance of the MXenes M2CO2 (M=Ti, Zr, or Hf), Chem. Mater., 28, 1647, 10.1021/acs.chemmater.5b04257
Kumar, 2016, Thermoelectric performance of functionalized Sc2C MXenes, Phys. Rev. B, 94, 035405, 10.1103/PhysRevB.94.035405
Halim, 2016, X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes), Appl. Surf. Sci., 362, 406, 10.1016/j.apsusc.2015.11.089
Kim, 2017, Thermoelectric properties of two-dimensional molybdenum-based MXenes, Chem. Mater., 29, 6472, 10.1021/acs.chemmater.7b02056
Kishi, 1999, Micro thermoelectric modules and their application to wristwatches as an energy source, 301
Leonov, 2007, Thermoelectric converters of human warmth for self-powered wireless sensor nodes, IEEE Sens. J., 7, 650, 10.1109/JSEN.2007.894917
Leonov, 2011, Simulation of maximum power in the wearable thermoelectric generator with a small thermopile, Microsyst. Technol., 17, 495, 10.1007/s00542-011-1262-6
Leonov, 2013, Thermoelectric energy harvesting of human body heat for wearable sensors, IEEE Sens. J., 13, 2284, 10.1109/JSEN.2013.2252526
Leonov, 2010, Hybrid thermoelectric–photovoltaic generators in wireless electroencephalography diadem and electrocardiography shirt, J. Electron. Mater., 39, 1674, 10.1007/s11664-010-1230-4
Beretta, 2017, Thermoelectric characterization of flexible micro-thermoelectric generators, Rev. Sci. Instrum., 88, 015103, 10.1063/1.4973417
Hokazono, 2014, Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices, J. Electron. Mater., 43, 2196, 10.1007/s11664-014-3003-y
Wan, 2016, Flexible thermoelectric foil for wearable energy harvesting, Nano Energy, 30, 840, 10.1016/j.nanoen.2016.09.011
Pan, 2007, Development of a rotary electromagnetic microgenerator, J. Micromech. Microeng., 17, 120, 10.1088/0960-1317/17/1/016
Du, 2014, Review of micro magnetic generator, Sens. Transducers J., 176, 1
Cao, 2013, Screen printed flexible Bi2Te3-Sb2Te3 based thermoelectric generator, J. Phys. Conf. Ser., 476, 012031, 10.1088/1742-6596/476/1/012031
Lu, 2014, Fabrication of flexible thermoelectric thin film devices by inkjet printing, Small, 10, 3551, 10.1002/smll.201303126
Kim, 2013, Wearable thermoelectric generator for human clothing applications, 1376
Kim, 2014, Wearable thermoelectric generator for harvesting human body heat energy, Smart Mater. Struct., 23, 105002, 10.1088/0964-1726/23/10/105002
Lu, 2016, Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body, Appl. Energy, 164, 57, 10.1016/j.apenergy.2015.11.038
Kim, 2014, A wearable thermoelectric generator fabricated on a glass fabric, Energy Environ. Sci., 7, 1959, 10.1039/c4ee00242c
Rojas, 2017, Paper-based origami flexible and foldable thermoelectric nanogenerator, Nano Energy, 31, 296, 10.1016/j.nanoen.2016.11.012
Liu, 2017, 55
Hyland, 2016, Wearable thermoelectric generators for human body heat harvesting, Appl. Energy, 182, 518, 10.1016/j.apenergy.2016.08.150
Kim, 2017, Post ionized defect engineering of the screen-printed Bi2Te2.7Se0.3 thick film for high performance flexible thermoelectric generator, Nano Energy, 31, 258, 10.1016/j.nanoen.2016.11.034
Kim, 2018, Structural design of a flexible thermoelectric power generator for wearable applications, Appl. Energy, 214, 131, 10.1016/j.apenergy.2018.01.074
Kim, 2014, Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity, ACS Nano, 8, 2377, 10.1021/nn405893t
Hewitt, 2012, Multilayered carbon nanotube/polymer composite based thermoelectric fabrics, Nano Lett., 12, 1307, 10.1021/nl203806q
Du, 2017, Multifold enhancement of the output power of flexible thermoelectric generators made from cotton fabrics coated with conducting polymer, RSC Adv., 7, 43737, 10.1039/C7RA08663F
Zhou, 2017, High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture, Nat. Commun., 8, 14886, 10.1038/ncomms14886
Dörling, 2016, Photoinduced p- to n-type switching in thermoelectric polymer-carbon nanotube composites, Adv. Mater., 28, 2782, 10.1002/adma.201505521
Luo, 2018, Flexible thermoelectric device based on poly(ether-b-amide12) and high-purity carbon nanotubes mixed bilayer heterogeneous films, ACS Appl. Energy Mater., 1, 1904, 10.1021/acsaem.7b00190
Yadav, 2008, Fiber-based flexible thermoelectric power generator, J. Power Sources, 175, 909, 10.1016/j.jpowsour.2007.09.096
Jiao, 2013, Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling, Philos. Trans. R. Soc. A, 372, 20130008, 10.1098/rsta.2013.0008
Wang, 2018, Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics, Energy Environ. Sci., 11, 1307, 10.1039/C7EE03617E