Flexible thermoelectric materials and devices

Applied Materials Today - Tập 12 - Trang 366-388 - 2018
Yong Du1,2, Jiayue Xu1, Biplab Paul2, Per Eklund2
1School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
2Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fitriani, 2016, A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery, Renew. Sust. Energ. Rev., 64, 635, 10.1016/j.rser.2016.06.035

Yang, 2009, Automotive applications of thermoelectric materials, J. Electron. Mater., 38, 1245, 10.1007/s11664-009-0680-z

Seebeck, 1822, Magnetische polarisation der metalle und erze durch temperatur-differenz, Abh. Akad. Wiss. Berlin, 1820–21, 289

Rowe, 1995

Li, 2010, High-performance nanostructured thermoelectric materials, NPG Asia Mater., 2, 152, 10.1038/asiamat.2010.138

Du, 2015, Thermoelectric fabrics: toward power generating clothing, Sci. Rep., 5, 6144, 10.1038/srep06411

He, 2017, Advances in thermoelectric materials research: looking back and moving forward, Science, 357, 6358, 10.1126/science.aak9997

Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012

Poudel, 2008, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320, 634, 10.1126/science.1156446

Harman, 2005, Nanostructured thermoelectric materials, J. Electron. Mater., 34, 19, 10.1007/s11664-005-0083-8

Vining, 2009, An inconvenient truth about thermoelectrics, Nat. Mater., 8, 83, 10.1038/nmat2361

Amatya, 2012, Trend for thermoelectric materials and their earth abundance, J. Electron. Mater., 41, 1011, 10.1007/s11664-011-1839-y

Pu, 2016, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators, Adv. Mater., 28, 98, 10.1002/adma.201504403

Scholdt, 2010, Organic semiconductors for thermoelectric applications, J. Electron. Mater., 39, 1589, 10.1007/s11664-010-1271-8

Kim, 2013, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Nat. Mater., 12, 719, 10.1038/nmat3635

Bubnova, 2011, Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene), Nat. Mater., 10, 429, 10.1038/nmat3012

Bubnova, 2012, Towards polymer-based organic thermoelectric generators, Energy Environ. Sci., 5, 9345, 10.1039/c2ee22777k

Yakuphanoglu, 2008, Electrical conductivity, thermoelectric power, and optical properties of organo-soluble polyaniline organic semiconductor, J. Electron. Mater., 37, 930, 10.1007/s11664-008-0404-9

Kemp, 2006, Effect of ammonia on the temperature-dependent conductivity and thermopower of polypyrrole, J. Polym. Sci. B: Polym. Phys., 44, 1331, 10.1002/polb.20792

Tang, 2017, Notably enhanced thermoelectric properties of lamellar polypyrrole by doping with β-naphthalene sulfonic acid, RSC Adv., 7, 20192, 10.1039/C7RA02302B

Du, 2012, Research progress on polymer-inorganic thermoelectric nanocomposite materials, Prog. Polym. Sci., 37, 820, 10.1016/j.progpolymsci.2011.11.003

Yao, 2010, Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites, ACS Nano, 4, 2445, 10.1021/nn1002562

Meng, 2010, A promising approach to enhanced thermoelectric properties using carbon nanotube networks, Adv. Mater., 22, 535, 10.1002/adma.200902221

Du, 2014, Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films, Appl. Mater. Interfaces, 6, 5735, 10.1021/am5002772

Wan, 2015, Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2, Nat. Mater., 14, 622, 10.1038/nmat4251

Tian, 2017, A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices, J. Mater. Chem. A, 5, 564, 10.1039/C6TA08838D

Zhang, 2014, Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently, Adv. Mater., 26, 6829, 10.1002/adma.201305371

Bahk, 2015, Flexible thermoelectric materials and device optimization for wearable energy harvesting, J. Mater. Chem. C, 3, 10362, 10.1039/C5TC01644D

Gao, 2016, Conducting polymer/carbon particle thermoelectric composites: emerging green energy materials, Compos. Sci. Technol., 124, 52, 10.1016/j.compscitech.2016.01.014

Blackburn, 2018, Carbon-nanotube-based thermoelectric materials and devices, Adv. Mater., 30, 1704386, 10.1002/adma.201704386

Pichanusakorn, 2010, Nanostructured thermoelectrics, Mater. Sci. Eng. R, 67, 19, 10.1016/j.mser.2009.10.001

Francioso, 2017, Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator, Energy Convers. Manage., 145, 204, 10.1016/j.enconman.2017.04.096

Lee, 2013, Development of thermoelectric inks for the fabrication of printable thermoelectric generators used in mobile wearable health monitoring systems, SPIE, 8691

Heremans, 2013, When thermoelectrics reached the nanoscale, Nat. Nanotechnol., 8, 471, 10.1038/nnano.2013.129

Chung, 2000, CsBi4Te6: a high-performance thermoelectric material for low-temperature applications, Science, 287, 1024, 10.1126/science.287.5455.1024

Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090

Glatz, 2006, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator, Sens. Actuators A, 132, 337, 10.1016/j.sna.2006.04.024

Francioso, 2011, Flexible thermoelectric generator for ambient assisted living wearable biometric sensors, J. Power Sources, 196, 3239, 10.1016/j.jpowsour.2010.11.081

Li, 2017, Thermoelectric properties of flexible PEDOT: PSS/polypyrrole/paper nanocomposite films, Materials, 10, 780, 10.3390/ma10070780

Li, 2017, PEDOT-based thermoelectric nanocomposites – a mini-review, Synth. Met., 226, 119, 10.1016/j.synthmet.2017.02.007

Lay, 2017, Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices, Carbohydr. Polym., 165, 86, 10.1016/j.carbpol.2017.02.043

Sun, 2015, Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices, J. Mater. Sci.: Mater. Electron., 26, 4438

Stepien, 2016

Du, 2013, The thermoelectric performance of carbon black/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) composite films, J. Mater. Sci.: Mater. Electron., 24, 1702

Kim, 2002, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synth. Met., 126, 311, 10.1016/S0379-6779(01)00576-8

Stepien, 2016, Investigation of the thermoelectric power factor of KOH-treated PEDOT: PSS dispersions for printing applications, Energy Harvest. Syst., 3, 101, 10.1515/ehs-2014-0060

Chang, 2009, The thermoelectric performance of poly(3,4-ethylenedioxythiophene)/poly (4-styrenesulfonate) thin films, J. Electron. Mater., 38, 1182, 10.1007/s11664-009-0821-4

Liu, 2015, The optimization of thermoelectric properties in a PEDOT:PSS thin film through post-treatment, RSC Adv., 5, 1910, 10.1039/C4RA09147G

Fan, 2016, Significant enhancement in the thermoelectric properties of PEDOT:PSS films through a treatment with organic solutions of inorganic salts, ACS Appl. Mater. Interfaces, 8, 23204, 10.1021/acsami.6b07234

Luo, 2013, Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment, J. Mater. Chem. A, 1, 7576, 10.1039/c3ta11209h

Fan, 2017, Higher PEDOT molecular weight giving rise to higher thermoelectric property of PEDOT:PSS: a comparative study of clevios P and Clevios PH1000, ACS Appl. Mater. Interfaces, 9, 11732, 10.1021/acsami.6b15158

Zhu, 2015, An effective approach to enhanced thermoelectric properties of PEDOT:PSS films by a DES post-treatment, J. Polym. Sci. B: Polym. Phys., 53, 885, 10.1002/polb.23718

Kim, 2014, Highly conductive PEDOT:PSS Nanofibrils induced by solution-processed crystallization, Adv. Mater., 26, 2268, 10.1002/adma.201304611

Kim, 2016, Sulfuric acid vapor treatment for enhancing the thermoelectric properties of PEDOT: PSS thin-films, J. Mater. Sci.: Mater. Electron., 27, 6122

Fan, 2017, Significantly enhanced thermoelectric properties of PEDOT: PSS films through sequential post-treatments with common acids and bases, Adv. Energy Mater., 7, 1602116, 10.1002/aenm.201602116

Cho, 2014, Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity, Nano Lett., 14, 3321, 10.1021/nl500748y

Tsukamoto, 1990, Structure and electrical properties of polyacetylene yielding a conductivity of 105S/cm, Jpn. J. Appl. Phys., 29, 125, 10.1143/JJAP.29.125

Yamaguchi, 2010, Synthesis of n-type π-conjugated polymers with pendant crown ether and their stability of n-doping state against air, Macromolecules, 43, 9348, 10.1021/ma101731v

Sun, 2012, Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s, Adv. Mater., 24, 932, 10.1002/adma.201104305

Russ, 2014, Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design, Adv. Mater., 26, 3473, 10.1002/adma.201306116

Schlitz, 2014, Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications, Adv. Mater., 26, 2825, 10.1002/adma.201304866

Wang, 2016, Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers, Adv. Mater., 28, 10764, 10.1002/adma.201603731

Shi, 2015, Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones, J. Am. Chem. Soc., 137, 6979, 10.1021/jacs.5b00945

Zhao, 2017, High conductivity and electron-transfer validation in an n-type fluoride-anion-doped polymer for thermoelectrics in air, Adv. Mater., 29, 1606928, 10.1002/adma.201606928

Zuo, 2018, High seebeck coefficient and power factor in n-type organic thermoelectrics, Adv. Electron. Mater., 4, 1700501, 10.1002/aelm.201700501

Zuo, 2018, High thermoelectric power factor from multilayer solution-processed organic films, Appl. Phys. Lett., 112, 083303, 10.1063/1.5016908

Wang, 2018, A chemically doped naphthalenediimide-bithiazole polymer for n-type organic thermoelectrics, Adv. Mater., 1801898, 10.1002/adma.201801898

Sun, 2016, Flexible n-type high-performance thermoelectric thin films of poly (nickel-ethylenetetrathiolate) prepared by an electrochemical method, Adv. Mater., 28, 3351, 10.1002/adma.201505922

See, 2010, Water-processable polymer-nanocrystal hybrids for thermoelectrics, Nano Lett., 10, 4664, 10.1021/nl102880k

Song, 2016, Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4, J. Nanopart. Res., 18, 386, 10.1007/s11051-016-3701-x

Song, 2017, Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator, Energy, 125, 519, 10.1016/j.energy.2017.01.037

Zhang, 2010, Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites, ACS Appl. Mater. Interfaces, 2, 3170, 10.1021/am100654p

Du, 2012, Influence of sintering temperature on thermoelectric properties of Bi2Te3/Polythiophene composite materials, J. Mater. Sci.: Mater. Electron., 23, 870

Zhang, 2017, Mechanically durable and flexible thermoelectric films from PEDOT:PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites, Adv. Electron. Mater., 3, 1600554, 10.1002/aelm.201600554

Xiong, 2016, Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types, J. Mater. Sci.: Mater. Electron., 27, 1769

Ju, 2016, Chemically exfoliated SnSe nanosheets and their SnSe/poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) composite films for polymer based thermoelectric applications, ACS Nano, 10, 5730, 10.1021/acsnano.5b07355

Ju, 2016, Fabrication of conductive polymer/inorganic nanoparticles composite films: PEDOT:PSS with exfoliated tin selenide nanosheets for polymer-based thermoelectric devices, Chem. Eng. J., 297, 66, 10.1016/j.cej.2016.03.137

Du, 2012, Preparation and characterization of multiwalled carbon nanotube/poly(3-hexylthiophene) thermoelectric composite materials, Synth. Met., 162, 375, 10.1016/j.synthmet.2011.12.023

Wang, 2015, Thermally driven large n-type voltage responses from hybrids of carbon nanotubes and poly (3,4-ethylenedioxythiophene) with tetrakis (dimethylamino) ethylene, Adv. Mater., 27, 6855, 10.1002/adma.201502950

Wang, 2016, Influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI composite films, Org. Electron., 39, 146, 10.1016/j.orgel.2016.09.008

Wang, 2017, Thermoelectric properties of the PEDOT/SWCNT composite films prepared by a vapor phase polymerization, Synth. Met., 224, 27, 10.1016/j.synthmet.2016.11.031

Chen, 2017, Strong anisotropy in thermoelectric properties of CNT/PANI composites, Carbon, 114, 1, 10.1016/j.carbon.2016.11.074

Du, 2012, Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite, Synth. Met., 161, 2688, 10.1016/j.synthmet.2011.09.044

Du, 2012, Preparation and characterization of graphene nanosheets/poly(3-hexylthiophene) thermoelectric composite materials, Synth. Met., 162, 2102, 10.1016/j.synthmet.2012.09.011

Wang, 2017, Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor, ACS Appl. Mater. Interfaces, 9, 20124, 10.1021/acsami.7b05357

Wan, 2017, Ultrahigh thermoelectric power factor in flexible hybrid inorganic–organic superlattice, Nat. Commun., 8, 1024, 10.1038/s41467-017-01149-4

Wan, 2015, Dielectric mismatch mediates carrier mobility in organic-intercalated layered TiS2, Nano Lett., 15, 6302, 10.1021/acs.nanolett.5b01013

Jin, 2017, Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin films, J. Mater. Sci., 52, 6093, 10.1007/s10853-017-0848-5

Giri, 2016, Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices, Phys. Rev. B, 93, 024201, 10.1103/PhysRevB.93.024201

Giri, 2016, Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices, Phys. Rev. B, 93, 115310, 10.1103/PhysRevB.93.115310

Karttunen, 2017, Flexible thermoelectric ZnO–organic superlattices on cotton textile substrates by ALD/MLD, Adv. Electron. Mater., 3, 1600459, 10.1002/aelm.201600459

Yu, 2008, Thermoelectric behavior of segregated-network polymer nanocomposites, Nano Lett., 8, 4428, 10.1021/nl802345s

Chen, 2017, Bendable n-type metallic nanocomposites with large thermoelectric power factor, Adv. Mater., 29, 1604752, 10.1002/adma.201604752

Du, 2018, Flexible n-type tungsten carbide/polylactic acid thermoelectric composites fabricated by additive manufacturing, Coatings, 8, 25, 10.3390/coatings8010025

Zhou, 2015, Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires, ACS Appl. Mater. Interfaces, 7, 21015, 10.1021/acsami.5b07144

Ju, 2018, Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe0.8S0.2 nanosheets/carbon nanotubes for wearable electronic applications, J. Mater. Chem. A, 6, 5627, 10.1039/C7TA11285H

McGrail, 2015, Polymer composites for thermoelectric applications, Angew. Chem. Int. Ed., 54, 1710, 10.1002/anie.201408431

Hicks, 1993, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B: Condens. Matter, 47, 12727, 10.1103/PhysRevB.47.12727

Hicks, 1993, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B: Condens. Matter, 47, 16631, 10.1103/PhysRevB.47.16631

Nuthongkum, 2017, RSM base study of the effect of argon gas flow rate and annealing temperature on the [Bi]:[Te] ratio and thermoelectric properties of flexible Bi-Te thin film, J. Electron. Mater., 46, 2900, 10.1007/s11664-016-5024-1

Nuthongkum, 2017, [Bi]:[Te] control, structural and thermoelectric properties of flexible BixTey thin films prepared by RF magnetron sputtering at different sputtering pressures, J. Electron. Mater., 46, 6444, 10.1007/s11664-017-5671-x

Fan, 2014, Thermoelectric properties of zinc antimonide thin film deposited on flexible polyimide substrate by RF magnetron sputtering, J. Mater. Sci.: Mater. Electron., 25, 5060

Goncalves, 2010, Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation, Thin Solid Films, 518, 2816, 10.1016/j.tsf.2009.08.038

Goncalves, 2008, Optimization of Bi2Te3 and Sb2Te3 thin films deposited by co-evaporation on polyimide for thermoelectric applications, Vacuum, 82, 1499, 10.1016/j.vacuum.2008.03.076

Goncalves, 2011, Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications, Thin Solid Films, 519, 4152, 10.1016/j.tsf.2011.01.395

Yang, 2017, Thermoelectric characteristics of γ-Ag2Te nanoparticle thin films on flexible substrates, Thin Solid Films, 641, 65, 10.1016/j.tsf.2017.01.068

Lee, 2011, Thermoelectric properties of screen-printed ZnSb film, Thin Solid Films, 519, 5441, 10.1016/j.tsf.2011.03.031

Shen, 2017, Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering, Appl. Surf. Sci., 414, 197, 10.1016/j.apsusc.2017.04.074

Wang, 1993, Electronic transport properties of KxC70 thin films, Phys. Rev. B, 48, 10657, 10.1103/PhysRevB.48.10657

Zhao, 2012, Flexible carbon nanotube papers with improved thermoelectric properties, Energy Environ. Sci., 5, 5364, 10.1039/C1EE01931G

Choi, 2014, Enhanced thermoelectric properties of the flexible tellurium nanowire film hybridized with single-walled carbon nanotube, Synth. Met., 198, 340, 10.1016/j.synthmet.2014.10.037

Choi, 2015, Enhanced thermopower in flexible tellurium nanowire films doped using single-walled carbon nanotubes with a rationally designed work function, Carbon, 94, 577, 10.1016/j.carbon.2015.07.043

Gao, 2016, Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films for thermoelectrics, RSC Adv., 6, 31580, 10.1039/C6RA00916F

Yu, 2012, Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes, Energy Environ. Sci., 5, 9481, 10.1039/c2ee22838f

Nonoguchi, 2013, Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants, Sci. Rep., 3, 3344, 10.1038/srep03344

Brownlie, 2018, Advances in carbon nanotube n-type doping: methods, analysis and applications, Carbon, 126, 257, 10.1016/j.carbon.2017.09.107

Zhao, 2014, n-Type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of merit, ACS Appl. Mater. Interfaces, 6, 4940, 10.1021/am4059167

Paul, 2017, Nanostructural tailoring to induce flexibility in thermoelectric Ca3Co4O9 thin films, ACS Appl. Mater. Interfaces, 9, 25308, 10.1021/acsami.7b06301

Paul, 2015, Mechanism of formation of the thermoelectric layered cobaltate Ca3Co4O9 by annealing of CaO–CoO thin films, Adv. Electron. Mater., 1, 371, 10.1002/aelm.201400022

Paul, 2018, Nanoporous Ca3Co4O9 thin films for transferable thermoelectrics, ACS Appl. Energy Mater., 1, 2261, 10.1021/acsaem.8b00333

Yang, 2017, Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film, Nat. Commun., 8, 16076, 10.1038/ncomms16076

Eklund, 2017, Layered ternary Mn+1AXn phases and their 2D derivative MXene: an overview from a thin-film perspective, J. Phys. D: Appl. Phys., 50, 113001, 10.1088/1361-6463/aa57bc

Novoselov, 2004, Electric field effect in atomically thin carbon films, science, 306, 666, 10.1126/science.1102896

Zhang, 2013, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies, Chem. Soc. Rev., 42, 8187, 10.1039/c3cs60138b

Tang, 2013, Graphene-analogous low-dimensional materials, Prog. Mater. Sci., 58, 1244, 10.1016/j.pmatsci.2013.04.003

Bhimanapati, 2015, Recent advances in two-dimensional materials beyond graphene, ACS Nano, 9, 11509, 10.1021/acsnano.5b05556

Voiry, 2015, Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev., 44, 2702, 10.1039/C5CS00151J

Nicolosi, 2013, Liquid exfoliation of layered materials, Science, 340, 1226419, 10.1126/science.1226419

Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975

Acerce, 2015, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nat. Nanotechnol., 10, 313, 10.1038/nnano.2015.40

Kappera, 2014, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors, Nat. Mater., 13, 1128, 10.1038/nmat4080

Huang, 2016, Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting, Nano Energy, 26, 172, 10.1016/j.nanoen.2016.05.022

Chen, 2015, Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes, J. Phys. Chem. C, 119, 26706, 10.1021/acs.jpcc.5b06728

Yang, 2017, Earth-abundant and non-toxic SiX (X=S, Se) monolayers as highly efficient thermoelectric materials, J. Phys. Chem. C, 121, 123, 10.1021/acs.jpcc.6b10163

Wang, 2015, Thermoelectric properties of single-layered SnSe sheet, Nanoscale, 7, 15962, 10.1039/C5NR03813H

Sharma, 2016, Thermoelectric response in single quintuple layer Bi2Te3, ACS Energy Lett., 1, 875, 10.1021/acsenergylett.6b00289

Kumar, 2015, Thermoelectric response of bulk and monolayer MoSe2 and WSe2, Chem. Mater., 27, 1278, 10.1021/cm504244b

Gandi, 2014, WS2 as an excellent high-temperature thermoelectric material, Chem. Mater., 26, 6628, 10.1021/cm503487n

Mahan, 1996, The best thermoelectric, Proc. Natl. Acad. Sci. U.S.A., 93, 7436, 10.1073/pnas.93.15.7436

Curtarolo, 2013, The high-throughput highway to computational materials design, Nat. Mater., 12, 191, 10.1038/nmat3568

Madsen, 2006, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun., 175, 67, 10.1016/j.cpc.2006.03.007

Eklund, 2016, Transition-metal-nitride-based thin films as novel energy harvesting materials, J. Mater. Chem. C, 4, 3905, 10.1039/C5TC03891J

Yang, 2016, On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective, NPJ Comput. Mater., 2, 15015, 10.1038/npjcompumats.2015.15

Gorai, 2017, Computationally guided discovery of thermoelectric materials, Nat. Rev. Mater., 2, 17053, 10.1038/natrevmats.2017.53

Singh, 2017, Experimental and theoretical investigations of thermoelectric properties of La0.82Ba0.18CoO3 compound in high temperature region, Phys. Lett. A, 381, 3101, 10.1016/j.physleta.2017.07.034

Naguib, 2014, 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138

Ng, 2017, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications, J. Mater. Chem. A, 5, 3039, 10.1039/C6TA06772G

Anasori, 2017, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2, 16098, 10.1038/natrevmats.2016.98

Naguib, 2011, Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4207, 10.1002/adma.201190147

Ghidiu, 2014, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970

Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502, 10.1126/science.1241488

Qin, 2018, High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS, Adv. Funct. Mater., 28, 1703808, 10.1002/adfm.201703808

Tao, 2017, Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering, Nat. Commun., 8, 14949, 10.1038/ncomms14949

Zha, 2016, The thermal and electrical properties of the promising semiconductor MXene Hf2CO2, Sci. Rep.-UK, 6, 27971, 10.1038/srep27971

Fashandi, 2015, Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides, Phys. Rev. B, 92, 155142, 10.1103/PhysRevB.92.155142

Ando, 2015, First-principles study of metal–insulator control by ion adsorption on Ti2C MXene dioxide monolayers, Appl. Phys. Express, 9, 015001, 10.7567/APEX.9.015001

Weng, 2015, Large-gap two-dimensional topological insulator in oxygen functionalized MXene, Phys. Rev. B, 92, 075436, 10.1103/PhysRevB.92.075436

Khazaei, 2016, Topological insulators in the ordered double transition metals M2′M″C2 MXenes (M′=Mo, W; M″=Ti, Zr, Hf), Phys. Rev. B, 94, 125152, 10.1103/PhysRevB.94.125152

Khazaei, 2017, Electronic properties and applications of MXenes: a theoretical review, J. Mater. Chem. C, 5, 2488, 10.1039/C7TC00140A

Khazaei, 2014, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family, Phys. Chem. Chem. Phys., 16, 7841, 10.1039/C4CP00467A

Gandi, 2016, Thermoelectric performance of the MXenes M2CO2 (M=Ti, Zr, or Hf), Chem. Mater., 28, 1647, 10.1021/acs.chemmater.5b04257

Kumar, 2016, Thermoelectric performance of functionalized Sc2C MXenes, Phys. Rev. B, 94, 035405, 10.1103/PhysRevB.94.035405

Halim, 2016, X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes), Appl. Surf. Sci., 362, 406, 10.1016/j.apsusc.2015.11.089

Kim, 2017, Thermoelectric properties of two-dimensional molybdenum-based MXenes, Chem. Mater., 29, 6472, 10.1021/acs.chemmater.7b02056

Kishi, 1999, Micro thermoelectric modules and their application to wristwatches as an energy source, 301

Leonov, 2007, Thermoelectric converters of human warmth for self-powered wireless sensor nodes, IEEE Sens. J., 7, 650, 10.1109/JSEN.2007.894917

Leonov, 2011, Simulation of maximum power in the wearable thermoelectric generator with a small thermopile, Microsyst. Technol., 17, 495, 10.1007/s00542-011-1262-6

Leonov, 2013, Thermoelectric energy harvesting of human body heat for wearable sensors, IEEE Sens. J., 13, 2284, 10.1109/JSEN.2013.2252526

Leonov, 2010, Hybrid thermoelectric–photovoltaic generators in wireless electroencephalography diadem and electrocardiography shirt, J. Electron. Mater., 39, 1674, 10.1007/s11664-010-1230-4

Beretta, 2017, Thermoelectric characterization of flexible micro-thermoelectric generators, Rev. Sci. Instrum., 88, 015103, 10.1063/1.4973417

Hokazono, 2014, Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices, J. Electron. Mater., 43, 2196, 10.1007/s11664-014-3003-y

Wan, 2016, Flexible thermoelectric foil for wearable energy harvesting, Nano Energy, 30, 840, 10.1016/j.nanoen.2016.09.011

Pan, 2007, Development of a rotary electromagnetic microgenerator, J. Micromech. Microeng., 17, 120, 10.1088/0960-1317/17/1/016

Du, 2014, Review of micro magnetic generator, Sens. Transducers J., 176, 1

Cao, 2013, Screen printed flexible Bi2Te3-Sb2Te3 based thermoelectric generator, J. Phys. Conf. Ser., 476, 012031, 10.1088/1742-6596/476/1/012031

Lu, 2014, Fabrication of flexible thermoelectric thin film devices by inkjet printing, Small, 10, 3551, 10.1002/smll.201303126

Kim, 2013, Wearable thermoelectric generator for human clothing applications, 1376

Kim, 2014, Wearable thermoelectric generator for harvesting human body heat energy, Smart Mater. Struct., 23, 105002, 10.1088/0964-1726/23/10/105002

Lu, 2016, Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body, Appl. Energy, 164, 57, 10.1016/j.apenergy.2015.11.038

Kim, 2014, A wearable thermoelectric generator fabricated on a glass fabric, Energy Environ. Sci., 7, 1959, 10.1039/c4ee00242c

Rojas, 2017, Paper-based origami flexible and foldable thermoelectric nanogenerator, Nano Energy, 31, 296, 10.1016/j.nanoen.2016.11.012

Liu, 2017, 55

Hyland, 2016, Wearable thermoelectric generators for human body heat harvesting, Appl. Energy, 182, 518, 10.1016/j.apenergy.2016.08.150

Kim, 2017, Post ionized defect engineering of the screen-printed Bi2Te2.7Se0.3 thick film for high performance flexible thermoelectric generator, Nano Energy, 31, 258, 10.1016/j.nanoen.2016.11.034

Kim, 2018, Structural design of a flexible thermoelectric power generator for wearable applications, Appl. Energy, 214, 131, 10.1016/j.apenergy.2018.01.074

Kim, 2014, Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity, ACS Nano, 8, 2377, 10.1021/nn405893t

Hewitt, 2012, Multilayered carbon nanotube/polymer composite based thermoelectric fabrics, Nano Lett., 12, 1307, 10.1021/nl203806q

Du, 2017, Multifold enhancement of the output power of flexible thermoelectric generators made from cotton fabrics coated with conducting polymer, RSC Adv., 7, 43737, 10.1039/C7RA08663F

Zhou, 2017, High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture, Nat. Commun., 8, 14886, 10.1038/ncomms14886

Dörling, 2016, Photoinduced p- to n-type switching in thermoelectric polymer-carbon nanotube composites, Adv. Mater., 28, 2782, 10.1002/adma.201505521

Luo, 2018, Flexible thermoelectric device based on poly(ether-b-amide12) and high-purity carbon nanotubes mixed bilayer heterogeneous films, ACS Appl. Energy Mater., 1, 1904, 10.1021/acsaem.7b00190

Yadav, 2008, Fiber-based flexible thermoelectric power generator, J. Power Sources, 175, 909, 10.1016/j.jpowsour.2007.09.096

Jiao, 2013, Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling, Philos. Trans. R. Soc. A, 372, 20130008, 10.1098/rsta.2013.0008

Wang, 2018, Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics, Energy Environ. Sci., 11, 1307, 10.1039/C7EE03617E

Fang, 2017, Large-scale integration of flexible materials into rolled and corrugated thermoelectric modules, J. Appl. Polym. Sci., 134, 44208, 10.1002/app.44208