Flexible multi-node simulation of cellular mobile communications: the Vienna 5G System Level Simulator
Tóm tắt
Từ khóa
Tài liệu tham khảo
J. C. Ikuno, M. Wrulich, M. Rupp, in IEEE Vehicular Technology Conference (VTC Spring). System level simulation of LTE networks (IEEETaipei, 2010).
L. Chen, W. Chen, B. Wang, X. Zhang, H. Chen, D. Yang, System-level simulation methodology and platform for mobile cellular systems. IEEE Commun. Mag.49(7), 148–155 (2011).
S. Cho, S. Chae, M. Rim, C. G. Kang, in 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). System level simulation for 5g cellular communication systems, (2017), pp. 296–299. https://doi.org/10.1109/ICUFN.2017.7993797 .
A. Daeinabi, K. Sandrasegaran, X. Zhu, in Proceedings of the 8th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks. System level simulation to evaluate the interference in macrocell-picocell downlink systems (ACMNew York, 2013), pp. 125–132.
M. Rupp, S. Schwarz, M. Taranetz, The Vienna LTE-Advanced Simulators: Up and Downlink, Link and System Level Simulation. 1st edn. Signals and Communication Technology (Springer, Singapore, 2016). https://doi.org/10.1007/978-981-10-0617-3 .
Y. Peng, H. Liu, W. Liu, J. Wang, D. Wang, in 2016 19th International Symposium on Wireless Personal Multimedia Communications (WPMC). Design and implementation of FBMC system level simulation (IEEEShenzen, 2016), pp. 435–440.
K. Min, M. Jung, S. Shin, S. Kim, S. Choi, in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). System level simulation of mmWave based mobile Xhaul networks (IEEESydney, 2017), pp. 1–5.
H. ElSawy, A. Sultan-Salem, M. S. Alouini, M. Z. Win, Modeling and analysis of cellular networks using stochastic geometry: A tutorial. IEEE Commun. Surv. Tutor.19(1), 167–203 (2017).
I. Trigui, S. Affes, B. Liang, Unified stochastic geometry modeling and analysis of cellular networks in LOS/NLOS and shadowed fading. IEEE Trans. Commun.65(12), 5470–5486 (2017).
L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, R. Zhang, An overview of massive MIMO: Benefits and challenges. IEEE J. Sel. Top. Sig. Process. 8(5), 742–758 (2014).
E. Larsson, O. Edfors, F. Tufvesson, T. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag.52(2), 186–195 (2014).
H. Ji, Y. Kim, J. Lee, E. Onggosanusi, Y. Nam, J. Zhang, B. Lee, B. Shim, Overview of full-dimension MIMO in LTE-advanced pro. IEEE Commun. Mag.PP(99), 2–11 (2016).
A. A. Zaidi, R. Baldemair, H. Tullberg, H. Bjorkegren, L. Sundstrom, J. Medbo, C. Kilinc, I. D. Silva, Waveform and numerology to support 5G services and requirements. IEEE Commun. Mag.54(11), 90–98 (2016).
P. Guan, D. Wu, T. Tian, J. Zhou, X. Zhang, L. Gu, A. Benjebbour, M. Iwabuchi, Y. Kishiyama, 5G field trials: OFDM-based waveforms and mixed numerologies. IEEE J. Sel. Areas Commun.35(6), 1234–1243 (2017).
K. S. Ali, H. Elsawy, A. Chaaban, M. S. Alouini, Non-orthogonal multiple access for large-scale 5G networks: Interference aware design. IEEE Access. 5:, 21204–21216 (2017).
Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, V. K. Bhargava, A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE J. Sel. Areas Commun.35(10), 2181–2195 (2017).
W. Roh, J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag.52(2), 106–113 (2014).
R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, A. M. Sayeed, An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Top. Signal Proc.10(3), 436–453 (2016).
S. Schwarz, J. C. Ikuno, M. Simko, M. Taranetz, Q. Wang, M. Rupp, Pushing the limits of LTE: A survey on research enhancing the standard. IEEE Access. 1:, 51–62 (2013). https://doi.org/10.1109/ACCESS.2013.2260371 .
M. Taranetz, T. Blazek, T. Kropfreiter, M. K. Müller, S. Schwarz, M. Rupp, Runtime precoding: Enabling multipoint transmission in LTE-advanced system level simulations. IEEE Access. 3:, 725–736 (2015).
E. Zöchmann, S. Schwarz, S. Pratschner, L. Nagel, M. Lerch, M. Rupp, Exploring the physical layer frontiers of cellular uplink. EURASIP J. Wirel. Commun. Netw.2016(1), 1–18 (2016). https://doi.org/10.1186/s13638-016-0609-1 .
Institute of Telecommunications, T. U. Wien, Vienna Cellular Communications Simulators. www.tc.tuwien.ac.at/vccs/ . Accessed 13 Apr 2018.
C. Mehlführer, J. C. Ikuno, M. Simko, S. Schwarz, M. Rupp, The Vienna LTE simulators — enabling reproducibility in wireless communications research. EURASIP J. Adv. Signal Proc. (JASP) Spec. Issue Reproducible Res.2011(1), 1–14 (2011).
G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, P. Camarda, Simulating lte cellular systems: An open-source framework. IEEE Trans. Veh. Technol.60(2), 498–513 (2011). https://doi.org/10.1109/TVT.2010.2091660 .
A. Virdis, G. Stea, G. Nardini, in Simulation and Modeling Methodologies, Technologies and Applications, ed. by M. S. Obaidat, T. Ören, J. Kacprzyk, and J. Filipe. Simulating lte/lte-advanced networks with simulte (SpringerCham, 2015), pp. 83–105.
M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan, M. Zorzi, End-to-end simulation of 5g mmwave networks. CoRR. abs/1705.02882: (2017). 1705.02882 .
N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, C. Bonnet, OpenAirInterface: A flexible platform for 5G research. ACM SIGCOMM Comput. Commun. Rev.44(5), 33–38 (2014).
K. Bakowski, M. Rodziewicz, P. Sroka, in 2015 International Symposium on Wireless Communication Systems (ISWCS). System-level simulations of selected aspects of 5G cellular networks, (2015), pp. 711–715. https://doi.org/10.1109/ISWCS.2015.7454442 .
X. Wang, Y. Chen, Z. Mai, in 2017 IEEE Globecom Workshops (GC Wkshps). A novel design of system level simulator for heterogeneous networks, (2017), pp. 1–6. https://doi.org/10.1109/GLOCOMW.2017.8269059 .
N. Mohsen, K. S. Hassan, in 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). C-ran simulator: A tool for evaluating 5g cloud-based networks system-level performance, (2015), pp. 302–309. https://doi.org/10.1109/WiMOB.2015.7347976 .
M. Liu, P. Ren, Q. Du, W. Ou, X. Xiong, G. Li, in 2016 IEEE/CIC International Conference on Communications in China (ICCC). Design of system-level simulation platform for 5g networks, (2016), pp. 1–6. https://doi.org/10.1109/ICCChina.2016.7636796 .
Y. Wang, J. Xu, L. Jiang, Challenges of system-level simulations and performance evaluation for 5G wireless networks. IEEE Access. 2:, 1553–1561 (2014). https://doi.org/10.1109/ACCESS.2014.2383833 .
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; NR; Physical channels and modulation TS 38.211, 3GPP (2017).
3rd Generation Partnership Project (3GPP), Study on 3D channel model for LTE. TR 36.873, 3GPP (2015).
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; Study on channel model for frequencies from 0.5 to 100GHz. TR 38.901, 3GPP (2017).
3rd Generation Partnership Project (3GPP), Study on enhanced LTE support for aerial vehicles. TR 36.777, 3GPP (2017).
S. Jaeckel, et al., QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials. IEEE Trans. Antennas Propag.62(6), 3242–3256 (2014). https://doi.org/10.1109/TAP.2014.2310220 .
H. Claussen, in 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications. Efficient modelling of channel maps with correlated shadow fading in mobile radio systems, vol. 1, (2005), pp. 512–516. https://doi.org/10.1109/PIMRC.2005.1651489 .
T. Dittrich, M. Taranetz, M. Rupp, in WSA 2017; 21th International ITG Workshop on Smart Antennas. An efficient method for avoiding shadow fading maps in system level simulations (IEEEBerlin, 2017), pp. 1–8.
J. C. Ikuno, System level modeling and optimization of the LTE downlink. PhD thesis, E389, TU Wien (2013).
M. K. Müller, M. Meidlinger, M. Rupp, in IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM’2014). Correlated UE impairments in ZF MU-MIMO transmissions (IEEEA Coruña, 2014), pp. 317–320.
S. Schwarz, in Advances in Mobile Computing and Communications: 4G and Beyond, ed. by M. Bala Krishna, J. Lloret Mauri. Limited feedback for 4G and beyond (CRC Press Taylor & Francis GroupBoca Raton, 2016).
M. Ding, D. López-Pérez, in 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). On the performance of practical ultra-dense networks: The major and minor factors, (2017), pp. 1–8. https://doi.org/10.23919/WIOPT.2017.7959926 .
M. Taranetz, M. K. Müller, A survey on modeling interference and blockage in urban heterogeneous cellular networks. EURASIP J. Wirel. Commun. Netw.2016(1), 252 (2016). https://doi.org/10.1186/s13638-016-0740-z .
ITU, Recommendation ITU-R M.1225: Guidelines for evaluation of radio transmission technologies for IMT-2000. Technical report, ITU (1997).
3GPP Technical Specification Group Radio Access Networks; Deployment aspects (Release 8). (2008). [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/25943.htm . Accessed June 2018.
Y. R. Zheng, C. Xiao, Simulation models with correct statistical properties for rayleigh fading channels. IEEE Trans. Commun.51(6), 920–928 (2003). https://doi.org/10.1109/TCOMM.2003.813259 .
WINNER II WP1, WINNER II channel models. IST-4-027756 WINNER II Deliverable D1.1.2 (2007).
F. Ademaj, M. Taranetz, M. Rupp, 3GPP 3D MIMO channel model: A holistic implementation guideline for open source simulation tools. EURASIP J. Wirel. Commun. Netw.2016(1), 55 (2016). https://doi.org/10.1155/2007/19070 .
F. Ademaj, M. K. Müller, S. Schwarz, M. Rupp, in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). Modeling of Spatially Correlated Geometry-Based Stochastic Channels, (2017), pp. 1–6. https://doi.org/10.1109/VTCFall.2017.8287884 .
T. Berisha, C. F. Mecklenbräuker, in 2017 IEEE Vehicular Networking Conference (VNC). 2D LOS/NLOS urban maps and LTE MIMO performance evaluation for vehicular use cases, (2017), pp. 291–294. https://doi.org/10.1109/VTCFall.2017.8287884 .
M. Gasser, Simulating Vehicle-to-Vehicle Connectivity on Real-World Street Networks, (2017).
M. K. Müller, M. Taranetz, M. Rupp, Analyzing wireless indoor communications by blockage models. IEEE Access. 5:, 2172–2186 (2016).
S. Schwarz, M. Rupp, Society in motion: challenges for LTE and beyond mobile communications. IEEE Commun. Mag.54(5), 76–83 (2016). https://doi.org/10.1109/MCOM.2016.7470939 .
Y. Wang, K. Venugopal, A. F. Molisch, R. W. Heath, in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall). Analysis of Urban Millimeter Wave Microcellular Networks (Montreal, 2016), pp. 1–5. https://doi.org/10.1109/VTCFall.2016.7880906 .
D. Niyato, M. Maso, D. I. Kim, A. Xhafa, M. Zorzi, A. Dutta, Practical perspectives on iot in 5g networks: From theory to industrial challenges and business opportunities. IEEE Commun. Mag.55(2), 68–69 (2017). https://doi.org/10.1109/MCOM.2017.7842414 .
A. V. Kini, M. Hosseinian, M. I. Lee, J. Stern-Berkowitz, in 2015 IEEE Wireless Communications and Networking Conference (WCNC). Reevaluating cell wraparound techniques for 3D channel model based system-level simulations (IEEEBoca Raton, 2015). https://doi.org/10.1109/wcnc.2015.7127464 .
M. Gudmundson, Correlation model for shadow fading in mobile radio systems. Electron. Lett.27(23), 2145–2146 (1991). https://doi.org/10.1049/el:19911328 .
Institute of Telecommunications, T. U. Wien, Vienna Cellular Communications Simulators Forum. www.nt.tuwien.ac.at/forum/ . Accessed 13 Apr 2018.