Flexible and coatable insulating silica aerogel/polyurethane composites via soft segment control

Composites Science and Technology - Tập 171 - Trang 244-251 - 2019
Jaehyun Cho1, Han Gyeol Jang1,2, Seong Yun Kim2, Beomjoo Yang1,3
1Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
2Department of Organic Materials and Fiber Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonbuk, 54896, Republic of Korea
3School of Civil Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea

Tài liệu tham khảo

Pierre, 2002, Chemistry of aerogels and their applications, Chem. Rev., 102, 4243, 10.1021/cr0101306 Kistler, 1931, Coherent expanded aerogels and jellies, Nature, 127, 741, 10.1038/127741a0 Zhang, 2004, Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization, J. Non-Cryst. Solids, 350, 152, 10.1016/j.jnoncrysol.2004.06.041 Maleki, 2014, An overview on silica aerogels synthesis and different mechanical reinforcing strategies, J. Non-Cryst. Solids, 385, 55, 10.1016/j.jnoncrysol.2013.10.017 Cardea, 2009, Supercritical gel drying: a powerful tool for tailoring symmetric porous PVDF−HFP membranes, ACS Appl. Mater. Interfaces, 1, 171, 10.1021/am800101a Daniel, 2009, Syndiotactic polystyrene aerogels with β, γ, and ε crystalline phases, Chem. Mater., 21, 1028, 10.1021/cm802537g Leventis, 2007, Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core-shell superstructures with skeletal properties of pure compounds, J. Mater. Chem., 17, 1502, 10.1039/B612625A Kim, 2015, Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution, Composites, Part A, 75, 39, 10.1016/j.compositesa.2015.04.014 Reim, 2005, Silica aerogel granulate material for thermal insulation and daylighting, Sol. Energy, 79, 131, 10.1016/j.solener.2004.08.032 Jelle, 2011, Traditional, state-of-the-art and future thermal building insulation materials and solutions – properties, requirements and possibilities, Energ. Buildings, 43, 2549, 10.1016/j.enbuild.2011.05.015 Fricke, 1998, Aerogels—recent progress in production techniques and novel applications, J. Sol-Gel Sci. Technol., 13, 299, 10.1023/A:1008663908431 Gerlach, 1992, Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices, J. Non-Cryst. Solids, 145, 227, 10.1016/S0022-3093(05)80461-2 Morris, 1999, Silica sol as a nanoglue: flexible synthesis of composite aerogels, Science, 284, 622, 10.1126/science.284.5414.622 Hrubesh, 1998, Aerogel applications, J. Non-Cryst. Solids, 225, 335, 10.1016/S0022-3093(98)00135-5 Wang, 2005, Humidity sensors based on silica nanoparticle aerogel thin films, Sens. Actuators, B, 107, 402, 10.1016/j.snb.2004.10.034 Haiyan, 2013, Multifunctional, ultra‐flyweight, synergistically assembled carbon aerogels, Adv. Mater., 25, 2554, 10.1002/adma.201204576 Fang, 2006, A modified activated carbon aerogel for high-energy storage in electric double layer capacitors, J. Power Sources, 163, 616, 10.1016/j.jpowsour.2006.09.014 Aricò, 2005, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4, 366, 10.1038/nmat1368 Guilminot, 2007, Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: electrochemical characterization, J. Power Sources, 166, 104, 10.1016/j.jpowsour.2006.12.084 Walendziewski, 2000, Synthesis and properties of alumina aerogels (II), React. Kinet. Catal. Lett., 71, 201, 10.1023/A:1010316004794 Li, 2017, Loads transfer across static electrical phase interfaces in silica aerogel/polymethyl methacrylate composites, Compos. Sci. Technol., 138, 169, 10.1016/j.compscitech.2016.12.004 Randall, 2011, Tailoring mechanical properties of aerogels for aerospace applications, ACS Appl. Mater. Interfaces, 3, 613, 10.1021/am200007n Fricke, 1988, Aerogels — highly tenuous solids with fascinating properties, J. Non-Cryst. Solids, 100, 169, 10.1016/0022-3093(88)90014-2 Leventis, 2002, Nanoengineering strong silica aerogels, Nano Lett, 2, 957, 10.1021/nl025690e Miner, 2004, The effects of ambient humidity on the mechanical properties and surface chemistry of hygroscopic silica aerogel, J. Non-Cryst. Solids, 350, 285, 10.1016/j.jnoncrysol.2004.06.023 Sai, 2018, Fabrication of elastic silica-bacterial cellulose composite aerogels with nanoscale interpenetrating network by ultrafast evaporative drying, Compos. Sci. Technol., 155, 72, 10.1016/j.compscitech.2017.11.004 Schmidt, 1998, Applications for silica aerogel products, J. Non-Cryst. Solids, 225, 364, 10.1016/S0022-3093(98)00054-4 Mahadik, 2017, Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process, Compos. Sci. Technol., 147, 45, 10.1016/j.compscitech.2017.04.036 Kim, 2018, Thermal management in polymer composites: a review of physical and structural parameters, Adv. Eng. Mater., 20, 10.1002/adem.201800204 Maleki, 2015, Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, J. Mater. Chem. A, 3, 1594, 10.1039/C4TA05618C Kim, 2018, Low shrinkage, mechanically strong polyimide hybrid aerogels containing hollow mesoporous silica nanospheres, Compos. Sci. Technol., 165, 355, 10.1016/j.compscitech.2018.07.021 Li, 2016, Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior, Mater. Des., 99, 349, 10.1016/j.matdes.2016.03.063 Wu, 2013, Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation, J. Nanomater., 2013, 8, 10.1155/2013/375093 He, 2017, Nanoporous SiO2 grafted aramid fibers with low thermal conductivity, Compos. Sci. Technol., 146, 91, 10.1016/j.compscitech.2017.04.021 Kim, 2018, Thermally insulating, fire-retardant, smokeless and flexible polyvinylidene fluoride nanofibers filled with silica aerogels, Chem. Eng. J., 351, 473, 10.1016/j.cej.2018.06.102 Kim, 2018, Multiscale prediction of thermal conductivity for nanocomposites containing crumpled carbon nanofillers with interfacial characteristics, Compos. Sci. Technol., 155, 169, 10.1016/j.compscitech.2017.12.011 Ju, 1994, Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities, Acta Mech, 103, 123, 10.1007/BF01180222 Nan, 2004, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 85, 3549, 10.1063/1.1808874 Lee, 2010, Force-induced redistribution of a chemical equilibrium, J. Am. Chem. Soc., 132, 16107, 10.1021/ja106332g Yilgör, 2000, Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers, Polymer, 41, 849, 10.1016/S0032-3861(99)00245-1 Wei, 2007, Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying, J. Am. Ceram. Soc., 90, 2003, 10.1111/j.1551-2916.2007.01671.x Chuang, 2004, The effect of different siloxane chain-extenders on the thermal degradation and stability of segmented polyurethanes, Polym. Degrad. Stab., 84, 69, 10.1016/j.polymdegradstab.2003.10.002 Dutta, 2014, Investigation of morphology, mechanical, dynamic mechanical and thermal behaviour of blends based on ethylene vinyl acetate (EVA) and thermoplastic polyurethane (TPU), RSC Adv, 4, 60831, 10.1039/C4RA07823C Shao, 2016, The synergy of double cross-linking agents on the properties of styrene butadiene rubber foams, Sci. Rep., 6, 36931, 10.1038/srep36931 Cho, 2017, Improving dispersion and barrier properties of polyketone/graphene nanoplatelet composites via noncovalent functionalization using aminopyrene, ACS Appl. Mater. Interfaces, 9, 27984, 10.1021/acsami.7b10474 Yu, 2011, Preparation of hyperbranched aromatic polyamide grafted nanoparticles for thermal properties reinforcement of epoxy composites, Polym. Chem., 2, 1380, 10.1039/c1py00096a Yang, 2017, A probabilistic micromechanical modeling for electrical properties of nanocomposites with multi-walled carbon nanotube morphology, Composites, Part A, 92, 108, 10.1016/j.compositesa.2016.11.009 Ravichandran, 2012, Halogen-free ultra-high flame retardant polymers through enzyme catalysis, Green Chem, 14, 819, 10.1039/c2gc16192c Chen, 2016, Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating, ACS Appl. Mater. Interfaces, 8, 32557, 10.1021/acsami.6b11659