Flexible Photodetector Based on 2D Materials: Processing, Architectures, and Applications

Advanced Materials Interfaces - Tập 7 Số 4 - 2020
Tao Dong1,2, João Simões2, Zhaochu Yang1
1Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067 China
2Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway

Tóm tắt

AbstractFlexible photodetectors have emerged during the past few years for applications in healthcare, security, and environmental monitoring. Recently, 2D materials have started being implemented as functional layers in flexible photodetector due to their outstanding optoelectronic characteristics paired with high mechanical flexibility. In this work, the authors analyze the progress of 2D material‐based flexible photodetectors architectures, with a focus on graphene family, (Di)chalcogenides and van der Waals heterostructures. The optical and mechanical characteristics of 2D materials flexible photodetectors are systematically analyzed. Furthermore, the processing techniques compatible with flexible substrates and proof‐of‐concept sensors integrating 2D material flexible photodetectors are also reviewed. In the last section, the remaining challenges and future perspectives are discussed, envisioning to support future developments in the field.

Từ khóa


Tài liệu tham khảo

10.1002/adfm.201803807

10.1038/s41467-018-07643-7

10.1038/s41467-017-01824-6

10.1002/advs.201800496

10.1039/C7CS00730B

Ali A., 2017, 2017 IEEE International Electron Devices Meeting

10.1002/inf2.12004

10.1038/natrevmats.2016.100

10.1016/j.orgel.2018.12.028

10.1021/ph500227u

10.1088/0957-4484/22/41/415204

10.1364/OE.22.030148

10.1002/smll.201701822

Stiff‐Roberts A. D., 2009, 2009 9th IEEE Conf. on Nanotechnology, 444

10.1109/JSTQE.2010.2093508

10.3390/s16020223

10.1016/j.pmatsci.2015.02.002

10.5772/intechopen.74021

10.1002/cssc.201802992

10.1002/advs.201900775

10.1016/j.nanoms.2019.10.002

10.1039/C5NR01052G

10.1088/1361-6463/aaf465

10.1364/AOP.11.000314

10.1002/smll.201603994

10.1088/0957-4484/27/22/225501

10.1038/nmat4703

10.1002/adma.201706103

10.1038/srep46281

10.3390/mi9070350

10.1039/C7NR07369K

10.1039/C8CS00084K

10.1002/cnma.201600290

10.1002/adma.201902039

10.1038/ncomms6678

10.1002/adma.201604201

10.1038/ncomms4782

10.1039/C9NR03611C

10.1016/j.eml.2017.01.008

Zhang R., 2016, Two‐Dimensional Materials: Synthesis, Characterization and Potential Applications

10.1557/jmr.2015.324

10.1007/s10853-015-9643-3

10.1088/2053-1583/aac764

10.1021/nl501793a

10.1021/nl300948c

10.1021/acsnano.5b02816

10.1039/C5NR02292D

10.1126/science.1157996

10.7150/thno.22573

10.1021/nl1022139

10.1021/nl5009037

10.1063/1.4940982

10.1002/smll.201300134

10.1021/nn402954e

10.1021/nn203879f

10.1039/C8NR01065J

10.1038/s41699-019-0110-x

10.1088/1361-6528/ab1a96

10.1088/0953-8984/27/31/313201

10.1002/aenm.201700535

10.1080/15583724.2018.1473424

Sapsanis C., 2016, 2016 IEEE 59th Int. Midwest Symp. on Circuits and Systems, 1

10.1002/app.10194

Armani D., 1999, Technical Digest. IEEE Int. MEMS 99 Conf., 222

10.1889/1.2825093

10.1103/PhysRevLett.102.206603

10.1021/nl203733r

10.1088/2053-1583/aa5920

10.1002/adma.201805417

10.1039/C8CS00254A

10.1002/cvde.201300051

10.3390/electronics4041033

10.1021/nn405529r

10.1126/science.aac9439

10.1063/1.4983646

10.1016/S1369-7021(13)70014-2

10.1002/adfm.201603886

10.1039/C7CS00556C

Montbach E., 2018, Roll‐to‐Roll Manufacturing: Process Elements and Recent Advances

Galagan Y., 2018, Roll‐to‐Roll Manufacturing: Process Elements and Recent Advances

10.1038/nnano.2010.132

10.1088/2053-1583/aa57fa

10.1002/adma.201705270

10.1088/2053-1583/aa5408

10.1557/jmr.2016.36

L.Tang C.Teng Y.Luo U.Khan H.Pan Z.Cai Y.Zhao B.Liu H.Cheng 2019 2019 2763704.

10.1063/1.5054760

10.1038/s41467-018-07848-w

10.1038/nmat3732

10.1016/j.carbon.2016.04.060

10.1021/acsami.5b02834

Sun T., 2017, Small, 13, 1705270

10.1038/s41598-017-05981-y

10.1038/nmat3004

10.1002/adma.201504927

10.1002/adom.201500198

10.1016/j.physrep.2019.01.005

10.1002/adfm.201402020

10.1016/j.optcom.2017.12.038

10.1002/adma.201670156

10.1039/C7TC04300G

10.1039/C7NR09438H

10.1038/s41699-018-0070-6

10.1016/j.pnsc.2018.08.007

10.1038/srep40945

10.1016/j.apmt.2017.12.013

10.1063/1.5036556

10.1039/C8NR07655C

10.1002/adma.201503864

10.1002/adma.201700439

10.1039/C9NR01700C

10.1002/admt.201900108

10.1021/acsnano.7b01168

10.1021/nl400107k

10.1021/nl500817g

10.1038/ncomms7972

10.1021/acsnano.6b05109

10.1002/smll.201700268

10.1039/C6NR07924E

10.1002/adma.201803194

10.1038/s41699-017-0034-2

10.1088/0960-1317/26/7/075003

10.1038/srep22277

10.1002/adma.201801164

10.1002/smtd.201700349

10.1038/nphoton.2017.75

10.1021/nn503521c

10.1002/adma.201402471

10.1039/C5TC01208B

10.1021/nn4054039

10.1021/acs.nanolett.5b04538

10.1016/j.carbon.2018.05.054

10.1021/nl503077y

10.1021/acsnano.5b00212

10.1021/acs.nanolett.5b00105

10.1002/adfm.201503905

10.1039/C7TC05036D

10.1002/adfm.201605554

10.1021/acsnano.7b04893

10.1002/adfm.201701611

10.1039/C4NR07313D

10.1021/nl504258m

10.1039/C6TC00918B

10.1039/C4TC02712D

10.1039/C6RA24491B

10.1002/smll.201802598

10.1039/C7NR04968D

10.1038/s41467-018-03870-0

10.1088/1361-6528/aa8587

10.1002/cnma.201700392

10.1016/j.matdes.2018.05.017

10.1039/C7TC04274D

10.1002/smll.201704524

10.1038/ncomms9063

10.1021/acsami.6b11631

10.1364/OE.25.014565

10.1021/acsphotonics.8b00420

10.1021/acsami.6b14483

10.1016/j.orgel.2017.06.063

10.1016/j.bios.2019.111617

Qiao H., 2019, Adv. Opt. Mater., 1900765