Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance

Advanced Functional Materials - Tập 27 Số 30 - 2017
Jun Yan1,2, Chang E. Ren1, Kathleen Maleski1, Christine B. Hatter1, Babak Anasori1, Patrick Urbankowski1, Asya Sarycheva1, Yury Gogotsi1
1A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
2Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

Tóm tắt

A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self‐assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in‐between MXene layers. As a result, the self‐restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO‐5 wt% electrode displays a volumetric capacitance of 1040 F cm−3 at a scan rate of 2 mV s−1 , an impressive rate capability with 61% capacitance retention at 1 V s−1 and long cycle life. Moreover, the fabricated binder‐free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L−1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. This work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next‐generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.

Từ khóa


Tài liệu tham khảo

10.1126/science.1216744

10.1039/C6TA05406D

10.1038/nnano.2015.40

10.1038/nature13970

10.1002/adma.201506133

10.1039/C5EE03109E

10.1038/natrevmats.2016.98

10.1002/adma.201102306

10.1126/science.1241488

10.1002/adma.201500604

10.1021/acsnano.5b06958

10.1126/science.aag2421

10.1021/acs.jpclett.5b01895

10.1002/adma.201604847

10.1002/adma.201504705

10.1002/adma.201404140

10.1002/aenm.201600969

10.1016/j.jpowsour.2016.07.062

10.1021/acsami.6b04481

10.1016/j.jpowsour.2015.12.036

10.1016/j.nanoen.2012.11.006

10.1002/aenm.201601847

10.1016/j.carbon.2010.06.047

10.1002/adfm.201505328

10.1073/pnas.1414215111

10.1038/nnano.2007.451

10.1021/acsnano.6b06597

10.1021/acs.chemmater.6b01275

10.1021/acs.chemmater.5b01623

10.1002/aenm.201500589

10.1038/nmat3601

10.1016/0013-4686(90)85068-X

10.1038/nnano.2010.162

10.1126/science.1239089

10.1002/adfm.201601323

10.1016/j.jpowsour.2015.03.017

10.1039/C5CC04722F

10.1016/j.carbon.2007.05.026

10.1016/j.jpowsour.2014.01.056

10.1021/nn402077v

10.1126/science.1213003

10.1016/j.jpowsour.2006.08.014