Flaviviruses: braking the entering

Current Opinion in Virology - Tập 3 Số 1 - Trang 3-12 - 2013
Theodore C. Pierson1, Margaret Kielian2
1Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States
2Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gould, 2008, Pathogenic flaviviruses, Lancet, 371, 500, 10.1016/S0140-6736(08)60238-X

Lindenbach, 2007, Flaviviridae: the viruses and their replication, vol 1, 1101

Sanchez-San Martin, 2009, Dealing with low pH: entry and exit of alphaviruses and flaviviruses, Trends Microbiol, 17, 514, 10.1016/j.tim.2009.08.002

Mukhopadhyay, 2005, A structural perspective of the flavivirus life cycle, Nat Rev Microbiol, 3, 13, 10.1038/nrmicro1067

Diamond, 2012, Antibody therapeutics against flaviviruses

Perera, 2008, Closing the door on flaviviruses: entry as a target for antiviral drug design, Antiviral Res, 80, 11, 10.1016/j.antiviral.2008.05.004

Melikyan, 2008, Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm, Retrovirology, 5, 111, 10.1186/1742-4690-5-111

Rey, 1995, The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution, Nature, 375, 291, 10.1038/375291a0

Zhang, 2004, Conformational changes of the flavivirus E glycoprotein, Structure, 12, 1607, 10.1016/j.str.2004.06.019

Kuhn, 2002, Structure of dengue virus: implications for flavivirus organization, maturation, and fusion, Cell, 108, 717, 10.1016/S0092-8674(02)00660-8

Luca, 2012, Crystal structure of the Japanese encephalitis virus envelope protein, J Virol, 86, 2337, 10.1128/JVI.06072-11

Allison, 2001, Mutational evidence for an internal fusion peptide in flavivirus envelope protein E, J Virol, 75, 4268, 10.1128/JVI.75.9.4268-4275.2001

Modis, 2003, A ligand-binding pocket in the dengue virus envelope glycoprotein, Proc Natl Acad Sci U S A, 100, 6986, 10.1073/pnas.0832193100

Davis, 2006, The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin), J Biol Chem, 281, 37183, 10.1074/jbc.M605429200

Tassaneetrithep, 2003, DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells, J Exp Med, 197, 823, 10.1084/jem.20021840

Navarro-Sanchez, 2003, Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses, EMBO Rep, 4, 723, 10.1038/sj.embor.embor866

Miller, 2008, The mannose receptor mediates dengue virus infection of macrophages, PLoS Pathog, 4, e17, 10.1371/journal.ppat.0040017

Allison, 1999, Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E, J Virol, 73, 5605, 10.1128/JVI.73.7.5605-5612.1999

Zhang, 2003, Visualization of membrane protein domains by cryo-electron microscopy of dengue virus, Nat Struct Biol, 10, 907, 10.1038/nsb990

Beasley, 2001, Epitopes on the dengue 1 virus envelope protein recognized by neutralizing IgM monoclonal antibodies, Virology, 279, 447, 10.1006/viro.2000.0721

Lee, 1997, Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein, Virology, 232, 281, 10.1006/viro.1997.8570

Hurrelbrink, 2001, Attenuation of Murray Valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding regions of the envelope protein, J Virol, 75, 7692, 10.1128/JVI.75.16.7692-7702.2001

Monath, 2002, Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines, J Virol, 76, 1932, 10.1128/JVI.76.4.1932-1943.2002

Pierson, 2012, Degrees of maturity: the complex structure and biology of flaviviruses, Curr Opin Virol, 2, 168, 10.1016/j.coviro.2012.02.011

Lok, 2008, Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins, Nat Struct Mol Biol, 15, 312, 10.1038/nsmb.1382

Dowd, 2011, A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus, PLoS Pathog, 7, e1002111, 10.1371/journal.ppat.1002111

Zhang, 2003, Structures of immature flavivirus particles, EMBO J, 22, 2604, 10.1093/emboj/cdg270

Zhang, 2007, Structure of immature West Nile virus, J Virol, 81, 6141, 10.1128/JVI.00037-07

Stadler, 1997, Proteolytic activation of tick-borne encephalitis virus by furin, J Virol, 71, 8475, 10.1128/JVI.71.11.8475-8481.1997

Yu, 2008, Structure of the immature dengue virus at low pH primes proteolytic maturation, Science, 319, 1834, 10.1126/science.1153264

Li, 2008, The flavivirus precursor membrane-envelope protein complex: structure and maturation, Science, 319, 1830, 10.1126/science.1153263

Elshuber, 2003, Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus, J Gen Virol, 84, 183, 10.1099/vir.0.18723-0

Mukhopadhyay, 2003, Structure of West Nile virus, Science, 302, 248, 10.1126/science.1089316

Sabo, 2012, Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature, Virology, 422, 174, 10.1016/j.virol.2011.10.023

Junjhon, 2010, Influence of pr–M cleavage on the heterogeneity of extracellular dengue virus particles, J Virol, 84, 8353, 10.1128/JVI.00696-10

Davis, 2006, West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection, J Virol, 80, 1290, 10.1128/JVI.80.3.1290-1301.2006

Nelson, 2008, Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization, PLoS Pathog, 4, e1000060, 10.1371/journal.ppat.1000060

Huang, 2006, The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection, J Immunol, 176, 2825, 10.4049/jimmunol.176.5.2825

Rodenhuis-Zybert, 2010, Immature dengue virus: a veiled pathogen?, PLoS Pathog, 6, e1000718, 10.1371/journal.ppat.1000718

Plevka, 2011, Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres, EMBO Rep, 12, 602, 10.1038/embor.2011.75

Harrison, 2008, Viral membrane fusion, Nat Struct Mol Biol, 15, 690, 10.1038/nsmb.1456

Stiasny, 2004, Effect of membrane curvature-modifying lipids on membrane fusion by tick-borne encephalitis virus, J Virol, 78, 8536, 10.1128/JVI.78.16.8536-8542.2004

Moesker, 2010, Characterization of the functional requirements of West Nile virus membrane fusion, J Gen Virol, 91, 389, 10.1099/vir.0.015255-0

Gollins, 1986, pH-dependent fusion between the flavivirus West Nile and liposomal model membranes, J Gen Virol, 67, 157, 10.1099/0022-1317-67-1-157

Zaitseva, 2010, Dengue virus ensures its fusion in late endosomes using compartment-specific lipids, PLoS Pathog, 6, e1001131, 10.1371/journal.ppat.1001131

Gollins, 1985, Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry, J Gen Virol, 66, 1969, 10.1099/0022-1317-66-9-1969

Chen, 1996, Demonstration of binding of dengue virus envelope protein to target cells, J Virol, 70, 8765, 10.1128/JVI.70.12.8765-8772.1996

Lee, 2000, Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry, J Virol, 74, 8867, 10.1128/JVI.74.19.8867-8875.2000

Chen, 1997, Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate, Nat Med, 3, 866, 10.1038/nm0897-866

Kroschewski, 2003, Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus, Virology, 308, 92, 10.1016/S0042-6822(02)00097-1

Mandl, 2001, Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo, J Virol, 75, 5627, 10.1128/JVI.75.12.5627-5637.2001

Lee, 2002, Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus, J Virol, 76, 4901, 10.1128/JVI.76.10.4901-4911.2002

Lozach, 2005, Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals, J Biol Chem, 280, 23698, 10.1074/jbc.M504337200

Dowd, 2011, Antibody-mediated neutralization of flaviviruses: a reductionist view, Virology, 411, 306, 10.1016/j.virol.2010.12.020

Krishnan, 2007, Rab 5 is required for the cellular entry of dengue and West Nile viruses, J Virol, 81, 4881, 10.1128/JVI.02210-06

Chu, 2004, Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway, J Virol, 78, 10543, 10.1128/JVI.78.19.10543-10555.2004

Chu, 2006, Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells, Virology, 349, 463, 10.1016/j.virol.2006.01.022

Nawa, 2003, Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine, J Gen Virol, 84, 1737, 10.1099/vir.0.18883-0

Acosta, 2008, Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis, J Gen Virol, 89, 474, 10.1099/vir.0.83357-0

van der Schaar, 2008, Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells, PLoS Pathog, 4, e1000244, 10.1371/journal.ppat.1000244

Suksanpaisan, 2009, Characterization of dengue virus entry into HepG2 cells, J Biomed Sci, 16, 17, 10.1186/1423-0127-16-17

Acosta, 2009, Alternative infectious entry pathways for dengue virus serotypes into mammalian cells, Cell Microbiol, 11, 1533, 10.1111/j.1462-5822.2009.01345.x

Didigu, 2012, Novel approaches to inhibit HIV entry, Viruses, 4, 309, 10.3390/v4020309

Tricou, 2010, A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults, PLoS Negl Trop Dis, 4, e785, 10.1371/journal.pntd.0000785

Kampmann, 2009, In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses, Antiviral Res, 84, 234, 10.1016/j.antiviral.2009.09.007

Zhou, 2008, Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein, ACS Chem Biol, 3, 765, 10.1021/cb800176t

Wang, 2009, A small-molecule dengue virus entry inhibitor, Antimicrob Agents Chemother, 53, 1823, 10.1128/AAC.01148-08

Poh, 2009, A small molecule fusion inhibitor of dengue virus, Antiviral Res, 84, 260, 10.1016/j.antiviral.2009.09.011

Mayhoub, 2011, An investigation of phenylthiazole antiflaviviral agents, Bioorg Med Chem, 19, 3845, 10.1016/j.bmc.2011.04.041

Li, 2008, Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins, J Med Chem, 51, 4660, 10.1021/jm800412d

Costin, 2010, Structural optimization and de novo design of dengue virus entry inhibitory peptides, PLoS Negl Trop Dis, 4, e721, 10.1371/journal.pntd.0000721

Kaufmann, 2009, Capturing a flavivirus pre-fusion intermediate, PLoS Pathog, 5, e1000672, 10.1371/journal.ppat.1000672

Modis, 2004, Structure of the dengue virus envelope protein after membrane fusion, Nature, 427, 313, 10.1038/nature02165

Bressanelli, 2004, Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation, EMBO J, 23, 728, 10.1038/sj.emboj.7600064

Liao, 2005, Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion, J Cell Biol, 171, 111, 10.1083/jcb.200507075

Liao, 2010, In vitro reconstitution reveals key intermediate states of trimer formation by the dengue virus membrane fusion protein, J Virol, 84, 5730, 10.1128/JVI.00170-10

Schmidt, 2010, Peptide inhibitors of flavivirus entry derived from the E protein stem, J Virol, 84, 12549, 10.1128/JVI.01440-10

Schmidt, 2010, Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate, PLoS Pathog, 6, e1000851, 10.1371/journal.ppat.1000851

Hrobowski, 2005, Peptide inhibitors of dengue virus and West Nile virus infectivity, Virol J, 2, 49, 10.1186/1743-422X-2-49

Schmidt, 2012, Small-molecule inhibitors of dengue-virus entry, PLoS Pathog, 8, e1002627, 10.1371/journal.ppat.1002627

Melikyan, 2010, Driving a wedge between viral lipids blocks infection, Proc Natl Acad Sci U S A, 107, 17069, 10.1073/pnas.1012748107

Wolf, 2010, A broad-spectrum antiviral targeting entry of enveloped viruses, Proc Natl Acad Sci U S A, 107, 3157, 10.1073/pnas.0909587107

St Vincent, 2010, Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses, Proc Natl Acad Sci U S A, 107, 17339, 10.1073/pnas.1010026107

Yu, 2009, Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion, J Virol, 83, 12101, 10.1128/JVI.01637-09

Zheng, 2010, In vitro and in vivo studies identify important features of dengue virus pr–E protein interactions, PLoS Pathog, 6, e1001157, 10.1371/journal.ppat.1001157

Modis, 2005, Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein, J Virol, 79, 1223, 10.1128/JVI.79.2.1223-1231.2005