Flaviviruses: braking the entering
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lindenbach, 2007, Flaviviridae: the viruses and their replication, vol 1, 1101
Sanchez-San Martin, 2009, Dealing with low pH: entry and exit of alphaviruses and flaviviruses, Trends Microbiol, 17, 514, 10.1016/j.tim.2009.08.002
Mukhopadhyay, 2005, A structural perspective of the flavivirus life cycle, Nat Rev Microbiol, 3, 13, 10.1038/nrmicro1067
Diamond, 2012, Antibody therapeutics against flaviviruses
Perera, 2008, Closing the door on flaviviruses: entry as a target for antiviral drug design, Antiviral Res, 80, 11, 10.1016/j.antiviral.2008.05.004
Melikyan, 2008, Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm, Retrovirology, 5, 111, 10.1186/1742-4690-5-111
Rey, 1995, The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution, Nature, 375, 291, 10.1038/375291a0
Zhang, 2004, Conformational changes of the flavivirus E glycoprotein, Structure, 12, 1607, 10.1016/j.str.2004.06.019
Kuhn, 2002, Structure of dengue virus: implications for flavivirus organization, maturation, and fusion, Cell, 108, 717, 10.1016/S0092-8674(02)00660-8
Luca, 2012, Crystal structure of the Japanese encephalitis virus envelope protein, J Virol, 86, 2337, 10.1128/JVI.06072-11
Allison, 2001, Mutational evidence for an internal fusion peptide in flavivirus envelope protein E, J Virol, 75, 4268, 10.1128/JVI.75.9.4268-4275.2001
Modis, 2003, A ligand-binding pocket in the dengue virus envelope glycoprotein, Proc Natl Acad Sci U S A, 100, 6986, 10.1073/pnas.0832193100
Davis, 2006, The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin), J Biol Chem, 281, 37183, 10.1074/jbc.M605429200
Tassaneetrithep, 2003, DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells, J Exp Med, 197, 823, 10.1084/jem.20021840
Navarro-Sanchez, 2003, Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses, EMBO Rep, 4, 723, 10.1038/sj.embor.embor866
Miller, 2008, The mannose receptor mediates dengue virus infection of macrophages, PLoS Pathog, 4, e17, 10.1371/journal.ppat.0040017
Allison, 1999, Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E, J Virol, 73, 5605, 10.1128/JVI.73.7.5605-5612.1999
Zhang, 2003, Visualization of membrane protein domains by cryo-electron microscopy of dengue virus, Nat Struct Biol, 10, 907, 10.1038/nsb990
Beasley, 2001, Epitopes on the dengue 1 virus envelope protein recognized by neutralizing IgM monoclonal antibodies, Virology, 279, 447, 10.1006/viro.2000.0721
Lee, 1997, Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein, Virology, 232, 281, 10.1006/viro.1997.8570
Hurrelbrink, 2001, Attenuation of Murray Valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding regions of the envelope protein, J Virol, 75, 7692, 10.1128/JVI.75.16.7692-7702.2001
Monath, 2002, Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines, J Virol, 76, 1932, 10.1128/JVI.76.4.1932-1943.2002
Pierson, 2012, Degrees of maturity: the complex structure and biology of flaviviruses, Curr Opin Virol, 2, 168, 10.1016/j.coviro.2012.02.011
Lok, 2008, Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins, Nat Struct Mol Biol, 15, 312, 10.1038/nsmb.1382
Dowd, 2011, A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus, PLoS Pathog, 7, e1002111, 10.1371/journal.ppat.1002111
Stadler, 1997, Proteolytic activation of tick-borne encephalitis virus by furin, J Virol, 71, 8475, 10.1128/JVI.71.11.8475-8481.1997
Yu, 2008, Structure of the immature dengue virus at low pH primes proteolytic maturation, Science, 319, 1834, 10.1126/science.1153264
Li, 2008, The flavivirus precursor membrane-envelope protein complex: structure and maturation, Science, 319, 1830, 10.1126/science.1153263
Elshuber, 2003, Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus, J Gen Virol, 84, 183, 10.1099/vir.0.18723-0
Sabo, 2012, Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature, Virology, 422, 174, 10.1016/j.virol.2011.10.023
Junjhon, 2010, Influence of pr–M cleavage on the heterogeneity of extracellular dengue virus particles, J Virol, 84, 8353, 10.1128/JVI.00696-10
Davis, 2006, West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection, J Virol, 80, 1290, 10.1128/JVI.80.3.1290-1301.2006
Nelson, 2008, Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization, PLoS Pathog, 4, e1000060, 10.1371/journal.ppat.1000060
Huang, 2006, The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection, J Immunol, 176, 2825, 10.4049/jimmunol.176.5.2825
Rodenhuis-Zybert, 2010, Immature dengue virus: a veiled pathogen?, PLoS Pathog, 6, e1000718, 10.1371/journal.ppat.1000718
Plevka, 2011, Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres, EMBO Rep, 12, 602, 10.1038/embor.2011.75
Stiasny, 2004, Effect of membrane curvature-modifying lipids on membrane fusion by tick-borne encephalitis virus, J Virol, 78, 8536, 10.1128/JVI.78.16.8536-8542.2004
Moesker, 2010, Characterization of the functional requirements of West Nile virus membrane fusion, J Gen Virol, 91, 389, 10.1099/vir.0.015255-0
Gollins, 1986, pH-dependent fusion between the flavivirus West Nile and liposomal model membranes, J Gen Virol, 67, 157, 10.1099/0022-1317-67-1-157
Zaitseva, 2010, Dengue virus ensures its fusion in late endosomes using compartment-specific lipids, PLoS Pathog, 6, e1001131, 10.1371/journal.ppat.1001131
Gollins, 1985, Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry, J Gen Virol, 66, 1969, 10.1099/0022-1317-66-9-1969
Chen, 1996, Demonstration of binding of dengue virus envelope protein to target cells, J Virol, 70, 8765, 10.1128/JVI.70.12.8765-8772.1996
Lee, 2000, Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry, J Virol, 74, 8867, 10.1128/JVI.74.19.8867-8875.2000
Chen, 1997, Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate, Nat Med, 3, 866, 10.1038/nm0897-866
Kroschewski, 2003, Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus, Virology, 308, 92, 10.1016/S0042-6822(02)00097-1
Mandl, 2001, Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo, J Virol, 75, 5627, 10.1128/JVI.75.12.5627-5637.2001
Lee, 2002, Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus, J Virol, 76, 4901, 10.1128/JVI.76.10.4901-4911.2002
Lozach, 2005, Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals, J Biol Chem, 280, 23698, 10.1074/jbc.M504337200
Dowd, 2011, Antibody-mediated neutralization of flaviviruses: a reductionist view, Virology, 411, 306, 10.1016/j.virol.2010.12.020
Krishnan, 2007, Rab 5 is required for the cellular entry of dengue and West Nile viruses, J Virol, 81, 4881, 10.1128/JVI.02210-06
Chu, 2004, Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway, J Virol, 78, 10543, 10.1128/JVI.78.19.10543-10555.2004
Chu, 2006, Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells, Virology, 349, 463, 10.1016/j.virol.2006.01.022
Nawa, 2003, Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine, J Gen Virol, 84, 1737, 10.1099/vir.0.18883-0
Acosta, 2008, Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis, J Gen Virol, 89, 474, 10.1099/vir.0.83357-0
van der Schaar, 2008, Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells, PLoS Pathog, 4, e1000244, 10.1371/journal.ppat.1000244
Suksanpaisan, 2009, Characterization of dengue virus entry into HepG2 cells, J Biomed Sci, 16, 17, 10.1186/1423-0127-16-17
Acosta, 2009, Alternative infectious entry pathways for dengue virus serotypes into mammalian cells, Cell Microbiol, 11, 1533, 10.1111/j.1462-5822.2009.01345.x
Tricou, 2010, A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults, PLoS Negl Trop Dis, 4, e785, 10.1371/journal.pntd.0000785
Kampmann, 2009, In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses, Antiviral Res, 84, 234, 10.1016/j.antiviral.2009.09.007
Zhou, 2008, Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein, ACS Chem Biol, 3, 765, 10.1021/cb800176t
Wang, 2009, A small-molecule dengue virus entry inhibitor, Antimicrob Agents Chemother, 53, 1823, 10.1128/AAC.01148-08
Poh, 2009, A small molecule fusion inhibitor of dengue virus, Antiviral Res, 84, 260, 10.1016/j.antiviral.2009.09.011
Mayhoub, 2011, An investigation of phenylthiazole antiflaviviral agents, Bioorg Med Chem, 19, 3845, 10.1016/j.bmc.2011.04.041
Li, 2008, Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins, J Med Chem, 51, 4660, 10.1021/jm800412d
Costin, 2010, Structural optimization and de novo design of dengue virus entry inhibitory peptides, PLoS Negl Trop Dis, 4, e721, 10.1371/journal.pntd.0000721
Kaufmann, 2009, Capturing a flavivirus pre-fusion intermediate, PLoS Pathog, 5, e1000672, 10.1371/journal.ppat.1000672
Modis, 2004, Structure of the dengue virus envelope protein after membrane fusion, Nature, 427, 313, 10.1038/nature02165
Bressanelli, 2004, Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation, EMBO J, 23, 728, 10.1038/sj.emboj.7600064
Liao, 2005, Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion, J Cell Biol, 171, 111, 10.1083/jcb.200507075
Liao, 2010, In vitro reconstitution reveals key intermediate states of trimer formation by the dengue virus membrane fusion protein, J Virol, 84, 5730, 10.1128/JVI.00170-10
Schmidt, 2010, Peptide inhibitors of flavivirus entry derived from the E protein stem, J Virol, 84, 12549, 10.1128/JVI.01440-10
Schmidt, 2010, Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate, PLoS Pathog, 6, e1000851, 10.1371/journal.ppat.1000851
Hrobowski, 2005, Peptide inhibitors of dengue virus and West Nile virus infectivity, Virol J, 2, 49, 10.1186/1743-422X-2-49
Schmidt, 2012, Small-molecule inhibitors of dengue-virus entry, PLoS Pathog, 8, e1002627, 10.1371/journal.ppat.1002627
Melikyan, 2010, Driving a wedge between viral lipids blocks infection, Proc Natl Acad Sci U S A, 107, 17069, 10.1073/pnas.1012748107
Wolf, 2010, A broad-spectrum antiviral targeting entry of enveloped viruses, Proc Natl Acad Sci U S A, 107, 3157, 10.1073/pnas.0909587107
St Vincent, 2010, Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses, Proc Natl Acad Sci U S A, 107, 17339, 10.1073/pnas.1010026107
Yu, 2009, Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion, J Virol, 83, 12101, 10.1128/JVI.01637-09
Zheng, 2010, In vitro and in vivo studies identify important features of dengue virus pr–E protein interactions, PLoS Pathog, 6, e1001157, 10.1371/journal.ppat.1001157