Glycosyl hóa flagellin phổ biến trong nhiều loại vi khuẩn gây bệnh thực vật

Springer Science and Business Media LLC - Tập 79 - Trang 359-365 - 2013
Yuki Ichinose1, Fumiko Taguchi1, Masanobu Yamamoto2, Mayumi Ohnishi-Kameyama2, Tatsuo Atsumi3,4, Masako Iwaki5, Hiromi Manabe6, Mio Kumagai6, Quan Thanh Nguyen5, Chi Linh Nguyen5, Yoshishige Inagaki1, Hiroshi Ono2, Kazuhiro Chiku2, Tadashi Ishii2, Mitsuru Yoshida2
1The Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
2National Food Research Institute, Tsukuba, Japan
3Department of Radiological Technology, School of Health Sciences, Gifu University of Medical Science, Seki, Japan
4Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
5The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
6Faculty of Agriculture, Okayama University, Okayama, Japan

Tóm tắt

Việc glycosyl hóa flagellin được biết đến như một yếu tố tham gia vào việc ổn định sợi, khả năng di động và độc lực của Pseudomonas syringae. Trong nghiên cứu này, chúng tôi đã điều tra tình trạng glycosyl hóa flagellin ở các vi khuẩn gây bệnh thực vật khác. Phân tích chuỗi axit amin suy diễn, nhuộm glyco và khối lượng phân tử của các flagellin tinh khiết cho thấy tất cả flagellin từ các vi khuẩn gây bệnh thực vật được khảo sát đều có glycosyl hóa. Hơn nữa, flagellin trong một đột biến không có khả năng glycosyl hóa từ Xanthomonas campestris pv. campestris (Xcc) có khối lượng phân tử giảm, và khả năng di động cùng độc lực của đột biến này đối với lá chủ cũng giảm. Những kết quả này cho thấy glycosyl hóa flagellin là phổ biến ở hầu hết các vi khuẩn gây bệnh thực vật và rằng glycosyl hóa flagellin là cần thiết cho độc lực ở Xcc.

Từ khóa

#glycosyl hóa flagellin #vi khuẩn gây bệnh thực vật #độc lực #Pseudomonas syringae #Xanthomonas campestris

Tài liệu tham khảo

Arora SK, Bangera M, Lory S, Ramphal R (2001) A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc Natl Acad Sci USA 98:9342–9347 Arora SK, Neely AN, Blair B, Lory S, Ramphal R (2005) Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun 73:4395–4398 da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB et al (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463 De Maayer P, Chan WY, Venter SN, Toth IK, Birch PR, Joubert F, Coutinho TA (2010) Genome sequence of Pantoea ananatis LMG20103, the causative agent of Eucalyptus blight and dieback. J Bacteriol 192:2936–2937 Glasner JD, Yang CH, Reverchon S, Hugouvieux-Cotte-Pattat N, Condemine G, Bohin JP, Van Gijsegem F et al (2011) Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937. J Bacteriol 193:2076–2077 Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J, Pattarini D, Majam G, Thibault P, Logan S (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311 Hirai H, Takai R, Iwano M, Nakai M, Kondo M, Takayama S, Isogai A, Che FS (2011) Glycosylation regulates specific induction of rice immune responses by Acidovorax avenae flagellin. J Biol Chem 286:25519–25530 Hitchen PG, Twigger K, Valiente E, Langdon RH, Wren BW, Dell A (2010) Glycoproteomics: a powerful tool for characterizing the diverse glycoforms of bacterial pilins and flagellins. Biochem Soc Trans 38:1307–1313 Hossain MM, Shibata S, Aizawa S, Tsuyumu S (2005) Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora. Physiol Mol Plant Pathol 66:134–143 Ichinose Y, Taguchi F, Nguyen LC, Naito K, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T (2011) Glycosylation of bacterial flagellins and its role in motility and virulence. In: Wolpert T, Shiraishi T, Collmer A, Akimitsu K, Glazebrook J (eds) Genome-enabled analysis of plant–pathogen interactions. APS Press, St. Paul, pp 215–224 King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyrocyanin and fluorescein. J Lab Clin Med 44:301–307 Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, Hahn JH, Koo BS, Lee GB, Kim H, Park HS, Yoon KO, Kim JH, Jung CH, Koh NH, Seo JS, Go SJ (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33:577–586 Lim J, Lee TH, Nahm BH, Choi YD, Kim M, Hwang I (2009) Complete genome sequence of Burkholderia glumae BGR1. J Bacteriol 191:3758–3759 Logan SM (2006) Flagellar glycosylation—a new component of the motility repertoire? Microbiology 152:1249–1262 Nguyen LC, Yamamoto M, Ohnishi-Kameyama M, Andi S, Taguchi F, Iwaki M, Yoshida M, Ishii T, Konishi T, Tsunemi K, Ichinose Y (2009) Genetic analysis of the genes involved in the synthesis of modified 4-amino-4,6-dideoxyglucose in flagellin of Pseudomonas syringae pv. tabaci. Mol Genet Genomics 282:595–605 Power PM, Jennings MP (2003) The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett 218:211–222 Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73 Taguchi F, Ichinose Y (2013) Virulence factor regulator (Vfr) controls virulence-associated phenotypes in Pseudomonas syringae pv. tabaci 6605 by a quorum sensing-independent mechanism. Mol Plant Pathol 14:279–292 Taguchi F, Shimizu R, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol 44:342–349 Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2006) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell Microbiol 8:923–938 Taguchi F, Shibata S, Suzuki T, Ogawa Y, Aizawa S, Takeuchi K, Ichinose Y (2008) Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605. J Bacteriol 190:764–768 Taguchi F, Suzuki T, Takeuchi K, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2009) Glycosylation of flagellin from Pseudomonas syringae pv. tabaci 6605 contributes to evasion of host tobacco plant surveillance system. Physiol Mol Plant Pathol 74:11–17 Taguchi F, Yamamoto M, Ohnishi-Kameyama M, Iwaki M, Yoshida M, Ishii T, Konishi T, Ichinose Y (2010) Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605. Microbiology 156:72–80 Takeuchi K, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J Bacteriol 185:6658–6665 Takeuchi K, Ono H, Yoshida M, Ishii T, Katoh E, Taguchi F, Miki R, Murata K, Kaku H, Ichinose Y (2007) Flagellin glycans from two pathovars of Pseudomonas syringae contain rhamnose in d and l configurations in different ratios and modified 4-amino-4,6-dideoxyglucose. J Bacteriol 189:6945–6956 Wilson K (2001) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.5 Yamamoto M, Ohnishi-Kameyama M, Nguyen CL, Taguchi F, Chiku K, Ishii T, Ono H, Yoshida M, Ichinose Y (2011) Identification of genes involved in the glycosylation of modified viosamine of flagellins in Pseudomonas syringae by mass spectrometry. Genes 2:788–803