Flag bundles on Fano manifolds
Tài liệu tham khảo
Akhiezer, 1995, Lie Group Actions in Complex Analysis, vol. E27
Barth, 1984, Compact Complex Surfaces, vol. 4
Bonavero, 2007, On covering and quasi-unsplit families of curves, J. Eur. Math. Soc., 9, 45, 10.4171/JEMS/71
Debarre, 2001, Higher-Dimensional Algebraic Geometry, 10.1007/978-1-4757-5406-3
Graber, 2003, Families of rationally connected varieties, J. Am. Math. Soc., 16, 57, 10.1090/S0894-0347-02-00402-2
Grothendieck, 1957, Sur la classification des fibrés holomorphes sur la sphére de Riemann, Am. J. Math., 79, 121, 10.2307/2372388
Hong, 2008, Characterization of the rational homogeneous space associated to a long simple root by its variety of minimal rational tangents, vol. 50, 217
Huckleberry, 2008, Actions of complex Lie groups and the Borel–Weil correspondence, vol. 468, 99
Humphreys, 1975, Linear Algebraic Groups, vol. 21
Humphreys, 1978, Introduction to Lie Algebras and Representation Theory, vol. 9
Humphreys, 1990, Reflection Groups and Coxeter Groups, vol. 29
Hwang, 2006, Rigidity of rational homogeneous spaces, 613
Kollár, 1996, Rational Curves on Algebraic Varieties, vol. 32
Landsberg, 2003, On the projective geometry of rational homogeneous varieties, Comment. Math. Helv., 78, 65, 10.1007/s000140300003
Lazarsfeld, 2004, Positivity in Algebraic Geometry. I, vol. 48
Mok, 2008, Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of minimal rational tangents, vol. 42, pt. 1, 41
Muñoz, 2015, Rational curves, Dynkin diagrams and Fano manifolds with nef tangent bundle, Math. Ann., 361, 583, 10.1007/s00208-014-1083-x
Muñoz, 2015, A survey on the Campana–Peternell conjecture, Rend. Ist. Mat. Univ. Trieste, 47, 127
Occhetta, 2016, Fano manifolds whose elementary contractions are smooth P1-fibrations: a geometric characterization of flag varieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5)
Okonek, 1980, Vector Bundles on Complex Projective Spaces, vol. 3
Serre, 1955, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble, 6, 1, 10.5802/aif.59