Fixed point theorems via generalized $$\varvec{F}$$ F -contractions with applications to functional equations occurring in dynamic programming
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal, R., Karapinar, E.: Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theor. Appl. 2013, 2 (2013)
Asadi, M., Karapinar, E., Salimi, P.: A new approach to G-metric and related fixed point theorems. J. Inequal. Appl. 2013, 254 (2013)
Aydi, H., Damjanovic, B., Samet, B., Shatanawi, W.: Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math. Comput. Model. 54, 2443–2450 (2011)
Aydi, H., Postolache, M., Shatanawi, W.: Coupled fixed point results for $$(\psi, \varphi )$$ ( ψ , φ ) -weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63(1), 298–309 (2012)
Azam, A., Arshad, M., Beg, I.: Common fixed points of two maps in cone metric spaces. Rendiconti del Circolo Matematico di Palermo 57, 433441 (2008)
Banach, B.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 3, 133–181 (1922)
Bellman, R.: Methods of nonliner analysis. Vol. II, vol. 61 of mathematics in science and engineering. Academic Press, New York (1973)
Chatterjea, S.K.: Fixed-point theorems. Comptes Rendus de lAcademie Bulgare des Sciences 25, 727–730 (1972)
Ciric, Lj.,B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)
Damjanovic, B., Samet, B., Vetro, C.: Common fixed point theorems for multi-valued maps. Acta Math. Sci. Ser. B 32, 818824 (2012)
Hardy, G.E., Rogers, D.E.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)
Jleli, M., Samet, B.: Remarks on G-metric spaces and fixed point theorems. Fixed Point Theor. Appl. 2012, 210 (2012)
Kalinda, A.K.: On a fixed point theorem for Kannan type mappings. Math. Jpn. 33(5), 721–723 (1988)
Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)
Karapinar, E., Agarwal, R.: Further fixed point results on G-metric spaces. Fixed Point Theor. Appl. 2013, 154 (2013)
Khan, M.S.: On fixed point theorem, Math. Jpn. 23 (1978)
Mustafa, Z., Obiedat, H., Awawdeh, F.: Some fixed point theorem for mapping on complete G-metric spaces. Fixed Point Theor. Appl. Article ID 189870 (2008)
Mustafa, Z., Sims, B.: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theor. Appl. Article ID 917175 (2009)
Mustafa, Z.: A new structure for generalized metric spaces with applications to fixed point theory. PhD thesis, The University of Newcastle, Australia (2005)
Mustafa, Z., Sims, B.: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7, 289–297 (2006)
Nadler Jr., S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475488 (1969)
Padcharoen, A., Gopal, D., Chaipunya, P., Kumam, P.: Fixed point and periodic point results for $$\alpha $$ α -type $$F$$ F -contractions in modular metric Spaces. Fixed Point Theor. Appl. 2016, 39 (2016)
Piri, H., Kumam, P.: Some fixed point theorems concerning $$F$$ F -contraction in complete metric spaces. Fixed Point Theor. Appl. 2014, 210 (2014)
Piri, H., Kumam, P.: Wardowski type fixed point theorems in complete metric spaces. Fixed Point Theor. Appl. 2016, 45 (2016)
Rehman, F.U., Ahmad, B.: Some fixed point theorems in complete metric space. Math. Jpn. 36(2), 239–243 (1991)
Reich, S.: Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 4, 1–11 (1971)
Reich, S.: Fixed points of contractive functions. Boll. Un. Mat. Ital. 5, 26–42 (1972)
Rhoades, B.E.: Some fixed point theorems for pair of mappings. Jnanabha. 15, 151–156 (1985)
Roldan, A., Karapnar, E.: Some multidimensional fixed point theorems on partially preordered G-metric spaces under $$(\psi, \varphi )$$ ( ψ , φ ) -contractivity conditions. Fixed Point Theor. Appl. 2013, 158 (2013)
Secelean, N.A.: Iterated function systems consisting of F-contractions. Fixed Point Theor. Appl. Article ID 277 (2013)
Shatanawi, W., Mustafa, Z.: On coupled random fixed point results in partially ordered metric spaces. Mat. Vesn. 64, 139–146 (2012)