Fixed point theorems via generalized $$\varvec{F}$$ F -contractions with applications to functional equations occurring in dynamic programming

Deepak Singh1, Vishal Joshi2, Mohammad Imdad3, Poom Kumam4
1Department of Applied Sciences, NITTTR, Govt. of India, Ministry of HRD, Bhopal, India
2Department of Applied Mathematics, Jabalpur Engineering College, Jabalpur, India
3Department of Mathematics, Aligarh Muslim University, Aligarh, India
4Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agarwal, R., Karapinar, E.: Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theor. Appl. 2013, 2 (2013)

Asadi, M., Karapinar, E., Salimi, P.: A new approach to G-metric and related fixed point theorems. J. Inequal. Appl. 2013, 254 (2013)

Aydi, H., Damjanovic, B., Samet, B., Shatanawi, W.: Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math. Comput. Model. 54, 2443–2450 (2011)

Aydi, H., Postolache, M., Shatanawi, W.: Coupled fixed point results for $$(\psi, \varphi )$$ ( ψ , φ ) -weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63(1), 298–309 (2012)

Azam, A., Arshad, M., Beg, I.: Common fixed points of two maps in cone metric spaces. Rendiconti del Circolo Matematico di Palermo 57, 433441 (2008)

Banach, B.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 3, 133–181 (1922)

Bellman, R.: Methods of nonliner analysis. Vol. II, vol. 61 of mathematics in science and engineering. Academic Press, New York (1973)

Bellman, R., Lee, E.S.: Functional equations in dynamic programming. Aequ. Math. 17, 118 (1978)

Chatterjea, S.K.: Fixed-point theorems. Comptes Rendus de lAcademie Bulgare des Sciences 25, 727–730 (1972)

Ciric, Lj.,B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)

Damjanovic, B., Samet, B., Vetro, C.: Common fixed point theorems for multi-valued maps. Acta Math. Sci. Ser. B 32, 818824 (2012)

Hardy, G.E., Rogers, D.E.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)

Jleli, M., Samet, B.: Remarks on G-metric spaces and fixed point theorems. Fixed Point Theor. Appl. 2012, 210 (2012)

Kalinda, A.K.: On a fixed point theorem for Kannan type mappings. Math. Jpn. 33(5), 721–723 (1988)

Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)

Karapinar, E., Agarwal, R.: Further fixed point results on G-metric spaces. Fixed Point Theor. Appl. 2013, 154 (2013)

Khan, M.S.: On fixed point theorem, Math. Jpn. 23 (1978)

Mustafa, Z., Obiedat, H., Awawdeh, F.: Some fixed point theorem for mapping on complete G-metric spaces. Fixed Point Theor. Appl. Article ID 189870 (2008)

Mustafa, Z., Sims, B.: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theor. Appl. Article ID 917175 (2009)

Mustafa, Z.: A new structure for generalized metric spaces with applications to fixed point theory. PhD thesis, The University of Newcastle, Australia (2005)

Mustafa, Z., Sims, B.: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7, 289–297 (2006)

Nadler Jr., S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475488 (1969)

Padcharoen, A., Gopal, D., Chaipunya, P., Kumam, P.: Fixed point and periodic point results for $$\alpha $$ α -type $$F$$ F -contractions in modular metric Spaces. Fixed Point Theor. Appl. 2016, 39 (2016)

Piri, H., Kumam, P.: Some fixed point theorems concerning $$F$$ F -contraction in complete metric spaces. Fixed Point Theor. Appl. 2014, 210 (2014)

Piri, H., Kumam, P.: Wardowski type fixed point theorems in complete metric spaces. Fixed Point Theor. Appl. 2016, 45 (2016)

Rehman, F.U., Ahmad, B.: Some fixed point theorems in complete metric space. Math. Jpn. 36(2), 239–243 (1991)

Reich, S.: Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 4, 1–11 (1971)

Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971)

Reich, S.: Fixed points of contractive functions. Boll. Un. Mat. Ital. 5, 26–42 (1972)

Rhoades, B.E.: Some fixed point theorems for pair of mappings. Jnanabha. 15, 151–156 (1985)

Roldan, A., Karapnar, E.: Some multidimensional fixed point theorems on partially preordered G-metric spaces under $$(\psi, \varphi )$$ ( ψ , φ ) -contractivity conditions. Fixed Point Theor. Appl. 2013, 158 (2013)

Samet, B., Vetro, C., Vetro, F.: Remarks on G-metric spaces. Int. J. Anal. Article ID 917158 (2013)

Secelean, N.A.: Iterated function systems consisting of F-contractions. Fixed Point Theor. Appl. Article ID 277 (2013)

Shatanawi, W., Mustafa, Z.: On coupled random fixed point results in partially ordered metric spaces. Mat. Vesn. 64, 139–146 (2012)

Wardowski, D.: Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theor. Appl. Article ID 94 (2012)