Fixed point theorems via comparable mappings in ordered metric spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbas, M., A.R. Khan, and T. Nazir. 2012. Common fixed point of multivalued mappings in ordered generalized metric spaces. Filomat 26 (5): 1045–1053.
Alam, A., and M. Imdad. 2017. Comparable linear contractions in ordered metric spaces. Fixed Point Theory 18 (2): 415–432.
Alam, A., and M. Imdad. 2016. Monotone generalized contractions in ordered metric spaces. Bulletin of the Korean Mathematical Society 53 (1): 61–81.
Alam, A., A.R. Khan, and M. Imdad. 2014. Some coincidence theorems for generalized nonlinear contractions in ordered metric spaces with applications. Fixed Point Theory and Applications 2014: 216.
Almezel, S., Q.H. Ansari, and M.A. Khamsi. 2014. Topics in fixed point theory. Switzerland: Springer.
Assad, N.A., and W.A. Kirk. 1972. Fixed point theorems for set-valued mappings of contractive type. Pacific Journal of Mathematics 43: 553–562.
Beg, I., and A.R. Butt. 2010. Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces. Mathematical Communications 15: 65–75.
Beg, I., and A.R. Butt. 2009. Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces. Nonlinear Analysis 71: 3699–3704.
Bhaskar, T.G., and V. Laskhmikantham. 2006. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis 65 (7): 1379–1393.
Ciric, L.B. 2006. Common fixed point theorems for multi-valued mappings. Demonstratio Mathematica 39 (2): 419–428.
Daffer, P.Z., H. Kaneko, and W. Li. 1996. On a conjecture of S. Reich. Proceedings of The American Mathematical Society 124 (10): 3159–3162.
Dimri, R.C., and G. Prasad. 2017. Coincidence theorems for comparable generalized non-linear contractions in ordered partial metric spaces. Communications of the Korean Mathematical Society 32 (2): 375–387.
Feng, Y., and S. Liu. 2006. Fixed point theorems for multi-valued contractive mappings and multivalued Caristi type mappings. Journal of Mathematical Analysis and Applications 317: 103–112.
Klim, D., and D. Wardowski. 2007. Fixed point theorems for set-valued contractions in complete metric spaces. Journal of Mathematical Analysis and Applications 334: 132–139.
Kutbi, M.A., A. Alam, and M. Imdad. 2015. Sharpening some core theorems of Nieto and Rodriguez-Lopez with application to boundary value problem. Fixed Point Theory and Applications 2015: 198.
Mizoguchi, N., and W. Takahashi. 1989. Fixed point theorems for multivalued mappings on complete metric spaces. Journal of Mathematical Analysis and Applications 141: 177–188.
Nieto, J.J., and R. Rodriguez-Lopez. 2005. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22: 223–239.
Ran, A.C.M., and M.C.B. Reurings. 2003. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proceedings of the American Mathematical Society 132 (5): 1435–1443.
Reich, S. 1972. Fixed points of contractive functions. Bollettino Unione Matenatica Italiana 5: 26–42.
Suzuki, T. 2008. Mizoguchi–Takahashi’s fixed point theorem is a real generalization of Nadler’s. Journal of Mathematical Analysis and Applications 340: 752–755.
Tiammee, J., and S. Suantai. 2014. Fixed point theorems for monotone multi-valued mappings in partially ordered metric spaces. Fixed Point Theory and Applications 2014: 110.
Turinici, M. 1986. Fixed points for monotone iteratively local contractions. Demonstratio Mathematica 19 (1): 171–180.
Turinici, M. 2011. Ran and Reurings theorems in ordered metric spaces. Journal of the Indian Mathematical Society 78: 207–214.