Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces

Kanokwan Sawangsup1, Wutiphol Sintunavarat1, Yeol Je Cho2,3
1Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University Rangsit Center, Pathumthani, Thailand
2Department of Mathematics Education, Gyeongsang National University, Jinju, South Korea
3School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Banach, S.: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund. Math. 3, 133–181 (1992)

Cho, Y.J.: Survey on metric fixed point theory and applications. In M. Ruzhansky et al. (eds.) Advances in Real and Complex Analysis with Applications, Trends in Math, pp. 183–241. Springer Singapore, (2017)

Ran, A.C.M., Reuring, M.C.B.: A fixed point theorem in partially ordered sets and some appllications to matrix equations. Proc. Am. Math. Soc. 132, 1435–1443 (2004)

Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223–239 (2005)

Gordji, M.E., Rameani, M., De La Sen, M., Cho, Y.J.: On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 18, 569–578 (2017)

Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)

Reich, S.: Kannan’s fixed point theorem. Boll. Della Unione Matematica Italiana 4(4), 1–11 (1971)

Hardy, G.E., Rogers, T.D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)

Ćirić, L.J.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)

Matkowski, J.: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 62, 344–348 (1977)

Rhoades, B.E.: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)

Berinde, V.: Iterative approximation of fixed points. Springer, Berlin, Heidelberg (2007)

Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136, 1861–1869 (2008)

Du, W.S.: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73, 1439–1446 (2010)

Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971)

Salazar, L., Aguirre Reich, S.: A remark on weakly contractive mappings. J. Nonlinear Convex. Anal. 16, 767–773 (2015)

Yan, F., Su, Y., Feng, Q.: A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differenctial equations. Fixed Point Theory Appl. 2012, 152 (2012)

Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)

Samet, B.: Ran-Reurings fixed point theorem is an immediate consequence of the Banach contraction principle. J. Nonlinear Sci. Appl. 9, 873–875 (2016)