Fixed point theorem and iterated function system in φ-metric modular space

Bikramjit Acharjee1, Guru Prem Prasad M1
1Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, India

Tóm tắt

We introduce and study the concept of φ-metric modular space and, then define φ-α-Meir-Keeler contraction on it and explore its fixed point. Further, we define the Hausdorff distance between two non-empty compact subsets of the considered space. Some topological properties of φ-metric modular space are also explored. Additionally, we prove the existence of the attractor (fractal) of the IFS consisting of φ-α-Meir-Keeler contractions.

Từ khóa


Tài liệu tham khảo

Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981) Barnsley, M.: Fractals Everywhere. Academic Press, Boston (1988) Hata, M.: On some properties of set-dynamical systems. Proc. Jpn. Acad., Ser. A, Math. Sci. 61, 99–102 (1985) Fernau, H.: Infinite iterated function systems. Math. Nachr. 170, 79–91 (1994) Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3, 133–181 (1922) Chistyakov, V.V.: Modular metric spaces. I. Basic concepts. Nonlinear Anal. 72, 1–14 (2010) Sanatee, A.G., Rathour, L., Mishra, V.N.,, Dewangan, V.: Some fixed point theorems in regular modular metric spaces and application to Caratheodory’s type anti-periodic boundary value problem. J. Anal. 31, 619–632 (2023) Kaplan, E., Kutukcu, S.: A common fixed point theorem for new type compatible maps on modular metric spaces. Asian-Eur. J. Math. 16, Paper No. 2250229 (2023) Karapinar, E., Aksoy, Ü., Fulga, A., Erhan, İ.M.: Fixed point theorems for mappings with a contractive iterate at a point in modular metric spaces. Fixed Point Theory 23, 519–531 (2022) Meir, A., Keeler, E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969) Karapınar, E., Kumam, P., Salimi, P.: On α-ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94 (2013)