Fixed and random effects models: making an informed choice

Springer Science and Business Media LLC - Tập 53 Số 2 - Trang 1051-1074 - 2019
Andrew Bell1, Malcolm Fairbrother2, Kelvyn Jones3
1Sheffield Methods Institute, University of Sheffield, ICOSS, 219 Portobello, Sheffield, S1 4DP, UK
2Sociology Department, Umeå University, Hus Y, Beteendevarhuset, Mediagränd 14, Beteendevetarhuset, Umeå universitet, 901 87, Umeå, Sweden
3School of Geographical Sciences and Centre for Multilevel Modelling, University of Bristol, University Road, Bristol, BS8 1SS, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aitkin, M.: A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55(1), 117–128 (1999)

Allison, P.D.: Using panel data to estimate the effects of events. Sociol. Methods Res. 23(2), 174–199 (1994)

Allison, P.D.: Fixed Effects Regression Methods for Longitudinal Data using SAS. SAS Press, Cary, NC (2005)

Allison, P.D.: Fixed Effects Regression Models. Sage, London (2009)

Allison, P.D.: Problems with the hybrid method. Stat. Horiz. http://www.statisticalhorizons.com/problems-with-the-hybrid-method (2014). Accessed 16 July 2015

Ard, K., Fairbrother, M.: Pollution prophylaxis? social capital and environmental inequality*. Soc. Sci. Q. 98(2), 584–607 (2017)

Arpino, B., Varriale, R.: Assessing the quality of institutions’ rankings obtained through multilevel linear regression models. J. Appl. Econ. Sci. 5(1), 7–22 (2010)

Barr, D.J., Levy, R., Scheepers, C., Tily, H.J.: Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68(3), 255–278 (2013)

Bates, D., Mächler, M., Bolker, B., Walker, S.: Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015)

Beck, N., Katz, J.N.: What to do (and not to do) with time-series cross-section data. Am. Polit. Sci. Rev. 89(3), 634–647 (1995)

Beck, N., Katz, J.N.: Random coefficient models for time-series-cross-section data: Monte Carlo experiments. Polit. Anal. 15(2), 182–195 (2007)

Bell, A., Jones, K.: Explaining fixed effects: random effects modelling of time-series cross-sectional and panel data. Polit. Sci. Res. Methods 3(1), 133–153 (2015)

Bell, A., Johnston, R., Jones, K.: Stylised fact or situated messiness? The diverse effects of increasing debt on national economic growth. J. Econ. Geogr. 15(2), 449–472 (2015)

Bell, A., Jones, K., Fairbrother, M.: Understanding and misunderstanding group mean centering: a commentary on Kelley et al’.s dangerous practice. Qual. Quant. 52(5), 2031–2036 (2018)

Bell, A., Holman, D., Jones, K.: Using shrinkage in multilevel models to understand intersectionality: a simulation study and a guide for best practice (2018) (in review)

Blakely, T.A., Woodward, A.J.: Ecological effects in multi-level studies. J. Epidemiol. Community Health 54(5), 367–374 (2000)

Brumback, B.A., Dailey, A.B., Brumback, L.C., Livingston, M.D., He, Z.: Adjusting for confounding by cluster using generalized linear mixed models. Stat. Probab. Lett. 80(21–22), 1650–1654 (2010)

Brumback, B.A., Zheng, H.W., Dailey, A.B.: Adjusting for confounding by neighborhood using generalized linear mixed models and complex survey data. Stat. Med. 32(8), 1313–1324 (2013)

Bryan, M.L., Jenkins, S.P.: Multilevel modelling of country effects: a cautionary tale. Eur. Sociol. Rev. 32(1), 3–22 (2016)

Bullen, N., Jones, K., Duncan, C.: Modelling complexity: analysing between-individual and between-place variation—a multilevel tutorial. Environ. Plann. A 29(4), 585–609 (1997)

Chatelain, J.-B., Ralf, K.: Inference on time-invariant variables using panel data: a pre-test estimator with an application to the returns to schooling. PSE Working Paper. https://ideas.repec.org/p/hal/wpaper/halshs-01719835.html (2018). Accessed 24 Apr 2018

Christmann, P.: Economic performance, quality of democracy and satisfaction with democracy. Electoral. Stud. 53, 79–89 (2018). https://doi.org/10.1016/J.ELECTSTUD.2018.04.004

Clark, T.S., Linzer, D.A.: Should I use fixed or random effects? Polit. Sci. Res. Methods 3(2), 399–408 (2015)

Croissant, Y., Millo, G.: Panel data econometrics in R: the plm package. J. Stat. Softw. 27(2), 1–43 (2008)

Deeming, C., Jones, K.: Investigating the macro determinants of self-rated health and well-being using the European social survey: methodological innovations across countries and time. Int. J. Sociol. 45(4), 256–285 (2015)

Delgado-Rodríguez, M., Llorca, J.: Bias. J. Epidemiol. Community Health 58(8), 635–641 (2004)

Duncan, C., Jones, K., Moon, G.: Health-related behaviour in context: a multilevel modelling approach. Soc. Sci. Med. 42(6), 817–830 (1996)

Fairbrother, M.: Two multilevel modeling techniques for analyzing comparative longitudinal survey datasets. Polit. Sci. Res. Methods 2(1), 119–140 (2014)

Fairbrother, M.: Trust and public support for environmental protection in diverse national contexts. Sociol. Sci. 3, 359–382 (2016). https://doi.org/10.15195/v3.a17

Fielding, A.: The role of the Hausman test and whether higher level effects should be treated as random or fixed. Multilevel Model. Newsl. 16(2), 3–9 (2004)

Fotouhi, A.R.: Comparisons of estimation procedures for nonlinear multilevel models. J. Stat. Softw. 8(9), 1–39 (2003)

Gelman, A.: Red State, Blue State, Rich State, Poor State : Why Americans Vote the Way They Do. Princeton University Press, Princeton (2008)

Gelman, A.: Why I don’t use the term “fixed and random effects”. Stat. Model. Causal Inference Soc. Sci. http://andrewgelman.com/2005/01/25/why_i_dont_use/ (2005). Accessed 19 Nov 2015

Goetgeluk, S., Vansteelandt, S.: Conditional generalized estimating equations for the analysis of clustered and longitudinal data. Biometrics 64(3), 772–780 (2008)

Goldstein, H.: Multilevel Statistical Models, 4th edn. Wiley, Chichester (2010)

Greene, W.H.: Econometric Analysis, 7th edn. Pearson, Harlow (2012)

Grilli, L., Rampichini, C.: The role of sample cluster means in multilevel models: a view on endogeneity and measurement error issues. Methodology 7(4), 121–133 (2011)

Grilli, L., Rampichini, C.: Specification of random effects in multilevel models: a review. Qual. Quant. 49(3), 967–976 (2015)

Halaby, C.N.: Panel models in sociological research: theory into practice. Ann. Rev. Sociol. 30(1), 507–544 (2004)

Hanchane, S., Mostafa, T.: Solving endogeneity problems in multilevel estimation: an example using education production functions. J. Appl. Stat. 39(5), 1101–1114 (2012)

Hausman, J.A.: Specification tests in econometrics. Econometrica 46(6), 1251–1271 (1978)

Heagerty, P.J., Kurland, B.F.: Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika 88(4), 973–985 (2001)

Hedeker, D., Mermelstein, R.J.: Mixed-effects regression models with heterogeneous variance: Analyzing ecological momentary assessment (EMA) data of smoking. In: Little, T.D., Bovaird, J.A., Card, N.A. (eds.) Modeling Contextual Effects in Longitudinal Studies. Erlbaum, Mahwah, NJ (2007)

Herndon, T., Ash, M., Pollin, R.: Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff. Camb. J. Econ. 38(2), 257–279 (2014)

Howard, A.L.: Leveraging time-varying covariates to test within- and between-person effects and interactions in the multilevel linear model. Emerg. Adulthood 3(6), 400–412 (2015)

Jones, K., Bullen, N.: Contextual models of urban house prices—a comparison of fixed-coefficient and random-coefficient models developed by expansion. Econ. Geogr. 70(3), 252–272 (1994)

Jones, K., Subramanian, S.V.: Developing Multilevel Models for Analysing Contextuality, Heterogeneity and Change, vol. 2. University of Bristol, Bristol (2013)

Jones, K., Johnston, R., Manley, D., Owen, D., Charlton, C.: Ethnic residential segregation: a multilevel, multigroup, multiscale approach exemplified by London in 2011. Demography 52(6), 1995–2019 (2015)

King, G., Roberts, M.: How robust standard errors expose methodological problems they do not fix. Polit. Anal. 23(2), 159–179 (2015)

Kloosterman, R., Notten, N., Tolsma, J., Kraaykamp, G.: The effects of parental reading socialization and early school involvement on children’s academic performance: a panel study of primary school pupils in the Netherlands. Eur. Sociol. Rev. 27(3), 291–306 (2010)

Lauen, D.L., Gaddis, S.M.: Exposure to classroom poverty and test score achievement: contextual effects or selection? Am. J. Sociol. 118(4), 943–979 (2013)

Leckie, G., Charlton, C.: runmlwin: a program to run the MLwiN multilevel modelling software from within Stata. J. Stat. Softw. 52(11), 1–40 (2013). https://doi.org/10.18637/jss.v052.i11

Maas, C.J.M., Hox, J.J.: Robustness issues in multilevel regression analysis. Stat. Neerl. 58(2), 127–137 (2004)

Maimon, D., Kuhl, D.C.: Social control and youth suicidality: situating durkheim’s ideas in a multilevel framework. Am. Sociol. Rev. 73(6), 921–943 (2008)

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., Bates, D.M.: Balancing type I error and power in linear mixed models. J. Mem. Lang. 94, 305–315 (2017)

McCulloch, C.E., Neuhaus, J.M.: Misspecifying the shape of a random effects distribution: why getting it wrong may not matter. Stat. Sci. 26(3), 388–402 (2011a)

McCulloch, C.E., Neuhaus, J.M.: Prediction of random effects in linear and generalized linear models under model misspecification. Biometrics 67(1), 270–279 (2011b)

McNeish, D.: Small sample methods for multilevel modeling: a colloquial elucidation of REML and the Kenward–Roger correction. Multivar. Behav. Res. 52(5), 661–670 (2017)

Milner, H.V., Kubota, K.: Why the move to free trade? Democracy and trade policy in the developing countries. Int. Org. 59(1), 107–143 (2005)

Mundlak, Y.: Pooling of time-series and cross-section data. Econometrica 46(1), 69–85 (1978)

Nerlove, M.: Essays in Panel Data Econometrics. Cambridge University Press, Cambridge (2005)

Neuhaus, J.M., McCulloch, C.E.: Separating between- and within-cluster covariate effects by using conditional and partitioning methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 68, 859–872 (2006)

Rasbash, J.: Module 4: multilevel structures and classifications. LEMMA VLE. http://www.bristol.ac.uk/media-library/sites/cmm/migrated/documents/4-concepts-sample.pdf (2008). Accessed 19 Nov 2015

Raudenbush, S.W., Bloom, H.S.: Learning about and from a distribution of program impacts using multisite trials. Am. J. Eval. 36(4), 475–499 (2015)

Raudenbush, S.W., Bryk, A.: Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edn. Sage, London (2002)

Raudenbush, S.W., Willms, J.: The estimation of school effects. J. Educ. Behav. Stat. 20(4), 307–335 (1995)

Reinhart, C.M., Rogoff, K.S.: Growth in a time of Debt. Am. Econ. Rev. 100(2), 573–578 (2010)

Ruiter, S., van Tubergen, F.: Religious attendance in cross-national perspective: a multilevel analysis of 60 countries. Am. J. Sociol. 115(3), 863–895 (2009)

Sampson, R.J., Raudenbush, S.W., Earls, F.: Neighborhoods and violent crime: a multilevel study of collective efficacy. Science 277(5328), 918–924 (1997)

Schempf, A.H., Kaufman, J.S., Messer, L., Mendola, P.: The neighborhood contribution to black-white perinatal disparities: an example from two north Carolina counties, 1999–2001. Am. J. Epidemiol. 174(6), 744–752 (2011)

Schmidt-Catran, A.W.: Economic inequality and public demand for redistribution: combining cross-sectional and longitudinal evidence. Socio Econ. Rev. 14(1), 119–140 (2016)

Schmidt-Catran, A.W., Fairbrother, M.: The random effects in multilevel models: getting them wrong and getting them right. Eur. Sociol. Rev. 32(1), 23–38 (2015)

Schmidt-Catran, A.W., Spies, D.C.: Immigration and welfare support in germany. Am. Sociol. Rev. (2016). https://doi.org/10.1177/0003122416633140

Schurer, S., Yong, J.: Personality, well-being and the marginal utility of income: what can we learn from random coefficient models? Working Paper. https://ideas.repec.org/p/yor/hectdg/12-01.html (2012). Accessed 28 Apr 2018

Shin, Y., Raudenbush, S.W.: A latent cluster-mean approach to the contextual effects model with missing data. J. Educ. Behav. Stat. 35(1), 26–53 (2010)

Shor, B., Bafumi, J., Keele, L., Park, D.: A Bayesian multilevel modeling approach to time-series cross-sectional data. Polit. Anal. 15(2), 165–181 (2007)

Snijders, T.A.B., Bosker, R.J.: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modelling, 2nd edn. Sage, London (2012)

Spiegelhalter, D.J.: Incorporating Bayesian ideas into health-care evaluation. Stat. Sci. 19(1), 156–174 (2004)

Steele, F., Vignoles, A., Jenkins, A.: The effect of school resources on pupil attainment: a multilevel simultaneous equation modelling approach. J. R. Stat. Soc. Ser. A Stat. Soc. 170, 801–824 (2007)

Stegmueller, D.: How many countries do you need for multilevel modeling? A comparison of frequentist and Bayesian approaches. Am. J. Polit. Sci. 57(3), 748–761 (2013)

Subramanian, S.V., O’Malley, A.J.: Modeling neighborhood effects the futility of comparing mixed and marginal approaches. Epidemiology 21(4), 475–478 (2010)

Subramanian, S.V., Jones, K., Kaddour, A., Krieger, N.: Revisiting Robinson: the perils of individualistic and ecologic fallacy. Int. J. Epidemiol. 38(2), 342–360 (2009)

Vaisey, S., Miles, A.: What you can—and can’t—do with three-wave panel data. Sociol. Methods Res. 46(1), 44–67 (2017)

Vallejo, G., Fernández, P., Cuesta, M., Livacic-Rojas, P.E.: Effects of modeling the heterogeneity on inferences drawn from multilevel designs. Multivar. Behav. Res. 50(1), 75–90 (2015)

Western, B.: Causal heterogeneity in comparative research: a bayesian hierarchical modelling approach. Am. J. Polit. Sci. 42(4), 1233–1259 (1998)

Wooldridge, J.M.: Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge, MA (2002)

Zhang, Z., Parker, R.M.A., Charlton, C.M.J., Leckie, G., Browne, W.J.: R2MLwiN: a package to run MLwiN from within R. J. Stat. Softw. 72(10), 1–43 (2016)