Fixed and random effects models: making an informed choice
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aitkin, M.: A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55(1), 117–128 (1999)
Allison, P.D.: Using panel data to estimate the effects of events. Sociol. Methods Res. 23(2), 174–199 (1994)
Allison, P.D.: Fixed Effects Regression Methods for Longitudinal Data using SAS. SAS Press, Cary, NC (2005)
Allison, P.D.: Problems with the hybrid method. Stat. Horiz. http://www.statisticalhorizons.com/problems-with-the-hybrid-method (2014). Accessed 16 July 2015
Ard, K., Fairbrother, M.: Pollution prophylaxis? social capital and environmental inequality*. Soc. Sci. Q. 98(2), 584–607 (2017)
Arpino, B., Varriale, R.: Assessing the quality of institutions’ rankings obtained through multilevel linear regression models. J. Appl. Econ. Sci. 5(1), 7–22 (2010)
Barr, D.J., Levy, R., Scheepers, C., Tily, H.J.: Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68(3), 255–278 (2013)
Bates, D., Mächler, M., Bolker, B., Walker, S.: Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015)
Beck, N., Katz, J.N.: What to do (and not to do) with time-series cross-section data. Am. Polit. Sci. Rev. 89(3), 634–647 (1995)
Beck, N., Katz, J.N.: Random coefficient models for time-series-cross-section data: Monte Carlo experiments. Polit. Anal. 15(2), 182–195 (2007)
Bell, A., Jones, K.: Explaining fixed effects: random effects modelling of time-series cross-sectional and panel data. Polit. Sci. Res. Methods 3(1), 133–153 (2015)
Bell, A., Johnston, R., Jones, K.: Stylised fact or situated messiness? The diverse effects of increasing debt on national economic growth. J. Econ. Geogr. 15(2), 449–472 (2015)
Bell, A., Jones, K., Fairbrother, M.: Understanding and misunderstanding group mean centering: a commentary on Kelley et al’.s dangerous practice. Qual. Quant. 52(5), 2031–2036 (2018)
Bell, A., Holman, D., Jones, K.: Using shrinkage in multilevel models to understand intersectionality: a simulation study and a guide for best practice (2018) (in review)
Blakely, T.A., Woodward, A.J.: Ecological effects in multi-level studies. J. Epidemiol. Community Health 54(5), 367–374 (2000)
Brumback, B.A., Dailey, A.B., Brumback, L.C., Livingston, M.D., He, Z.: Adjusting for confounding by cluster using generalized linear mixed models. Stat. Probab. Lett. 80(21–22), 1650–1654 (2010)
Brumback, B.A., Zheng, H.W., Dailey, A.B.: Adjusting for confounding by neighborhood using generalized linear mixed models and complex survey data. Stat. Med. 32(8), 1313–1324 (2013)
Bryan, M.L., Jenkins, S.P.: Multilevel modelling of country effects: a cautionary tale. Eur. Sociol. Rev. 32(1), 3–22 (2016)
Bullen, N., Jones, K., Duncan, C.: Modelling complexity: analysing between-individual and between-place variation—a multilevel tutorial. Environ. Plann. A 29(4), 585–609 (1997)
Chatelain, J.-B., Ralf, K.: Inference on time-invariant variables using panel data: a pre-test estimator with an application to the returns to schooling. PSE Working Paper. https://ideas.repec.org/p/hal/wpaper/halshs-01719835.html (2018). Accessed 24 Apr 2018
Christmann, P.: Economic performance, quality of democracy and satisfaction with democracy. Electoral. Stud. 53, 79–89 (2018). https://doi.org/10.1016/J.ELECTSTUD.2018.04.004
Clark, T.S., Linzer, D.A.: Should I use fixed or random effects? Polit. Sci. Res. Methods 3(2), 399–408 (2015)
Croissant, Y., Millo, G.: Panel data econometrics in R: the plm package. J. Stat. Softw. 27(2), 1–43 (2008)
Deeming, C., Jones, K.: Investigating the macro determinants of self-rated health and well-being using the European social survey: methodological innovations across countries and time. Int. J. Sociol. 45(4), 256–285 (2015)
Duncan, C., Jones, K., Moon, G.: Health-related behaviour in context: a multilevel modelling approach. Soc. Sci. Med. 42(6), 817–830 (1996)
Fairbrother, M.: Two multilevel modeling techniques for analyzing comparative longitudinal survey datasets. Polit. Sci. Res. Methods 2(1), 119–140 (2014)
Fairbrother, M.: Trust and public support for environmental protection in diverse national contexts. Sociol. Sci. 3, 359–382 (2016). https://doi.org/10.15195/v3.a17
Fielding, A.: The role of the Hausman test and whether higher level effects should be treated as random or fixed. Multilevel Model. Newsl. 16(2), 3–9 (2004)
Fotouhi, A.R.: Comparisons of estimation procedures for nonlinear multilevel models. J. Stat. Softw. 8(9), 1–39 (2003)
Gelman, A.: Red State, Blue State, Rich State, Poor State : Why Americans Vote the Way They Do. Princeton University Press, Princeton (2008)
Gelman, A.: Why I don’t use the term “fixed and random effects”. Stat. Model. Causal Inference Soc. Sci. http://andrewgelman.com/2005/01/25/why_i_dont_use/ (2005). Accessed 19 Nov 2015
Goetgeluk, S., Vansteelandt, S.: Conditional generalized estimating equations for the analysis of clustered and longitudinal data. Biometrics 64(3), 772–780 (2008)
Greene, W.H.: Econometric Analysis, 7th edn. Pearson, Harlow (2012)
Grilli, L., Rampichini, C.: The role of sample cluster means in multilevel models: a view on endogeneity and measurement error issues. Methodology 7(4), 121–133 (2011)
Grilli, L., Rampichini, C.: Specification of random effects in multilevel models: a review. Qual. Quant. 49(3), 967–976 (2015)
Halaby, C.N.: Panel models in sociological research: theory into practice. Ann. Rev. Sociol. 30(1), 507–544 (2004)
Hanchane, S., Mostafa, T.: Solving endogeneity problems in multilevel estimation: an example using education production functions. J. Appl. Stat. 39(5), 1101–1114 (2012)
Heagerty, P.J., Kurland, B.F.: Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika 88(4), 973–985 (2001)
Hedeker, D., Mermelstein, R.J.: Mixed-effects regression models with heterogeneous variance: Analyzing ecological momentary assessment (EMA) data of smoking. In: Little, T.D., Bovaird, J.A., Card, N.A. (eds.) Modeling Contextual Effects in Longitudinal Studies. Erlbaum, Mahwah, NJ (2007)
Herndon, T., Ash, M., Pollin, R.: Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff. Camb. J. Econ. 38(2), 257–279 (2014)
Howard, A.L.: Leveraging time-varying covariates to test within- and between-person effects and interactions in the multilevel linear model. Emerg. Adulthood 3(6), 400–412 (2015)
Jones, K., Bullen, N.: Contextual models of urban house prices—a comparison of fixed-coefficient and random-coefficient models developed by expansion. Econ. Geogr. 70(3), 252–272 (1994)
Jones, K., Subramanian, S.V.: Developing Multilevel Models for Analysing Contextuality, Heterogeneity and Change, vol. 2. University of Bristol, Bristol (2013)
Jones, K., Johnston, R., Manley, D., Owen, D., Charlton, C.: Ethnic residential segregation: a multilevel, multigroup, multiscale approach exemplified by London in 2011. Demography 52(6), 1995–2019 (2015)
King, G., Roberts, M.: How robust standard errors expose methodological problems they do not fix. Polit. Anal. 23(2), 159–179 (2015)
Kloosterman, R., Notten, N., Tolsma, J., Kraaykamp, G.: The effects of parental reading socialization and early school involvement on children’s academic performance: a panel study of primary school pupils in the Netherlands. Eur. Sociol. Rev. 27(3), 291–306 (2010)
Lauen, D.L., Gaddis, S.M.: Exposure to classroom poverty and test score achievement: contextual effects or selection? Am. J. Sociol. 118(4), 943–979 (2013)
Leckie, G., Charlton, C.: runmlwin: a program to run the MLwiN multilevel modelling software from within Stata. J. Stat. Softw. 52(11), 1–40 (2013). https://doi.org/10.18637/jss.v052.i11
Maas, C.J.M., Hox, J.J.: Robustness issues in multilevel regression analysis. Stat. Neerl. 58(2), 127–137 (2004)
Maimon, D., Kuhl, D.C.: Social control and youth suicidality: situating durkheim’s ideas in a multilevel framework. Am. Sociol. Rev. 73(6), 921–943 (2008)
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., Bates, D.M.: Balancing type I error and power in linear mixed models. J. Mem. Lang. 94, 305–315 (2017)
McCulloch, C.E., Neuhaus, J.M.: Misspecifying the shape of a random effects distribution: why getting it wrong may not matter. Stat. Sci. 26(3), 388–402 (2011a)
McCulloch, C.E., Neuhaus, J.M.: Prediction of random effects in linear and generalized linear models under model misspecification. Biometrics 67(1), 270–279 (2011b)
McNeish, D.: Small sample methods for multilevel modeling: a colloquial elucidation of REML and the Kenward–Roger correction. Multivar. Behav. Res. 52(5), 661–670 (2017)
Milner, H.V., Kubota, K.: Why the move to free trade? Democracy and trade policy in the developing countries. Int. Org. 59(1), 107–143 (2005)
Nerlove, M.: Essays in Panel Data Econometrics. Cambridge University Press, Cambridge (2005)
Neuhaus, J.M., McCulloch, C.E.: Separating between- and within-cluster covariate effects by using conditional and partitioning methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 68, 859–872 (2006)
Rasbash, J.: Module 4: multilevel structures and classifications. LEMMA VLE. http://www.bristol.ac.uk/media-library/sites/cmm/migrated/documents/4-concepts-sample.pdf (2008). Accessed 19 Nov 2015
Raudenbush, S.W., Bloom, H.S.: Learning about and from a distribution of program impacts using multisite trials. Am. J. Eval. 36(4), 475–499 (2015)
Raudenbush, S.W., Bryk, A.: Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edn. Sage, London (2002)
Raudenbush, S.W., Willms, J.: The estimation of school effects. J. Educ. Behav. Stat. 20(4), 307–335 (1995)
Ruiter, S., van Tubergen, F.: Religious attendance in cross-national perspective: a multilevel analysis of 60 countries. Am. J. Sociol. 115(3), 863–895 (2009)
Sampson, R.J., Raudenbush, S.W., Earls, F.: Neighborhoods and violent crime: a multilevel study of collective efficacy. Science 277(5328), 918–924 (1997)
Schempf, A.H., Kaufman, J.S., Messer, L., Mendola, P.: The neighborhood contribution to black-white perinatal disparities: an example from two north Carolina counties, 1999–2001. Am. J. Epidemiol. 174(6), 744–752 (2011)
Schmidt-Catran, A.W.: Economic inequality and public demand for redistribution: combining cross-sectional and longitudinal evidence. Socio Econ. Rev. 14(1), 119–140 (2016)
Schmidt-Catran, A.W., Fairbrother, M.: The random effects in multilevel models: getting them wrong and getting them right. Eur. Sociol. Rev. 32(1), 23–38 (2015)
Schmidt-Catran, A.W., Spies, D.C.: Immigration and welfare support in germany. Am. Sociol. Rev. (2016). https://doi.org/10.1177/0003122416633140
Schurer, S., Yong, J.: Personality, well-being and the marginal utility of income: what can we learn from random coefficient models? Working Paper. https://ideas.repec.org/p/yor/hectdg/12-01.html (2012). Accessed 28 Apr 2018
Shin, Y., Raudenbush, S.W.: A latent cluster-mean approach to the contextual effects model with missing data. J. Educ. Behav. Stat. 35(1), 26–53 (2010)
Shor, B., Bafumi, J., Keele, L., Park, D.: A Bayesian multilevel modeling approach to time-series cross-sectional data. Polit. Anal. 15(2), 165–181 (2007)
Snijders, T.A.B., Bosker, R.J.: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modelling, 2nd edn. Sage, London (2012)
Spiegelhalter, D.J.: Incorporating Bayesian ideas into health-care evaluation. Stat. Sci. 19(1), 156–174 (2004)
Steele, F., Vignoles, A., Jenkins, A.: The effect of school resources on pupil attainment: a multilevel simultaneous equation modelling approach. J. R. Stat. Soc. Ser. A Stat. Soc. 170, 801–824 (2007)
Stegmueller, D.: How many countries do you need for multilevel modeling? A comparison of frequentist and Bayesian approaches. Am. J. Polit. Sci. 57(3), 748–761 (2013)
Subramanian, S.V., O’Malley, A.J.: Modeling neighborhood effects the futility of comparing mixed and marginal approaches. Epidemiology 21(4), 475–478 (2010)
Subramanian, S.V., Jones, K., Kaddour, A., Krieger, N.: Revisiting Robinson: the perils of individualistic and ecologic fallacy. Int. J. Epidemiol. 38(2), 342–360 (2009)
Vaisey, S., Miles, A.: What you can—and can’t—do with three-wave panel data. Sociol. Methods Res. 46(1), 44–67 (2017)
Vallejo, G., Fernández, P., Cuesta, M., Livacic-Rojas, P.E.: Effects of modeling the heterogeneity on inferences drawn from multilevel designs. Multivar. Behav. Res. 50(1), 75–90 (2015)
Western, B.: Causal heterogeneity in comparative research: a bayesian hierarchical modelling approach. Am. J. Polit. Sci. 42(4), 1233–1259 (1998)
Wooldridge, J.M.: Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge, MA (2002)