Fish and Plankton Interplay Determines Both Plankton Spatio-Temporal Pattern Formation and Fish School Walks: A Theoretical Study

Nonlinear Dynamics, Psychology, and Life Sciences - Tập 4 - Trang 135-152 - 2000
Alexander B. Medvinsky1, Dmitry A. Tikhonov1, Jörg Enderlein2, Horst Malchow3
1Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
2Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
3Institute of Environmental Systems Research, Department of Mathematics and Computer Science, University of Osnabrück, Osnabrück, Germany

Tóm tắt

The fascinating variety of spatio-temporal patterns in aquatic ecosystems and the understanding of the governing mechanisms of its generation and further dynamics requires ongoing experimental and theoretical studies. After introducing a certain hybrid mathematical model, this paper makes an attempt to demonstrate that the predation of a mobile planktivorous fish school on zooplankton can initiate both plankton pattern formation and fish school walks. Nonlinear interactions in the model of a fish-zooplankton-algae trophic chain prevent a simple intuitive understanding of the system dynamics. It is shown that the fish school predation and motion can give rise to plankton spiral waves. In the course of the spiral wave formation, the amplitudes of the spatially averaged plankton density oscillations are decreasing dramatically. Fish school walks are shown to resemble a fractional Brownian motions with a Hurst exponent depending on the fish predation rate.

Tài liệu tham khảo

Alisch, L.-M., Azizighanban, S., & Bargfeldt, M. (1997). Dynamics of children's friendships. In R. A. Lee, S. Horsfall & E. Lee (Eds.), Chaos, complexity, and sociology. Myths, models, and theories (pp. 163-181). Thousand Oaks, CA: SAGE Publications. Bocharov, L. N. (1990). Systems analysis in short-term fishery forecasts (1st edition). Leningrad: Nauka. Ebeling, W., Engel, A., & Feistel, R. (1990). Physik der Evolutionsprozesse (1st edition). Berlin: Akademie-Verlag. Ebenhöh, W. (1980). A model of the dynamics of plankton patchiness. Modelling, Identification and Control, 1, 69-91. Fasham, M. J. R. (1978). The statistical and mathematical analysis of plankton patchiness. Oceanography and Marine Biology, 16, 43-79. Fernö, A., Pitcher, T. J., Melle, W., Nøttestad, L., Mackinson, S., Hollingworth, C., & Misund, O. A. (1998). The challenge of the herring in the Norwegian sea: Making optimal collective spatial decisions. SARSIA, 83, 149-167. Gardiner, C. W. (1983). Handbook of stochastic methods for physics, chemistry and the natural sciences (1st edition). Springer Series in Synergetics, Vol. 13. Berlin: Springer-Verlag. Goodwin, R. M. (1967). A growth cycle. In C. H. Feinstein (Ed.), Socialism, capitalism and economic growth (pp. 54-58). Cambridge: Cambridge University Press. Grusa, K.-U. (1988). Mathematical analysis of nonlinear dynamic processes (1st edition). Harlow, UK: Longman Scientific and Technical. Haag, G. (1989). Dynamic decision theory: Applications to urban and regional topics (3rd edition). Studies in Operational Regional Science, Vol. 5. Dordrecht: Kluwer. Haken, H. (1977). Synergetics. An introduction (1st edition). Springer Series in Synergetics, Vol. 1. Berlin: Springer. Helbing, D. (1995). Quantitative sociodynamics. Stochastic methods and models of social interaction processes (1st edition). Theory and Decision Library B: Mathematical and Statistical Methods, Vol. 31. Dordrecht: Kluwer. Helbing, D. (1997). Verkehrsdynamik: neue physikalische Modellierungskonzepte (1st edition). Berlin: Springer-Verlag. Holland, J. H. (1975). Adaptation in natural and artificial systems (1st edition). Ann Arbor, MI: University of Michigan Press. Kauffman, S. A. (1993). The origins of order. Self-organization and selection in evolution (1st edition). New York: Oxford University Press. Krinsky, V. I., Medvinsky, A. B., & Panfilov, A. V. (1986). Evolution of autowave vortices: Waves in the heart (1st edition). Moscow: Znanie. Levin, S. A., & Segel, L. A. (1976). Hypothesis for origin of planktonic patchiness. Nature, 259, 659. Lewin, K. (1951). Field theory in social science (1st edition). New York: Harper & Brothers. Lorenz, H.-W. (1993). Nonlinear dynamical economics and chaotic motion (2nd edition). Berlin: Springer-Verlag. Malchow, H. (1993). Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Proceedings of the Royal Society of London, B 251, 103-109. Malchow, H., & Shigesada, N. (1994). Nonequilibrium plankton community structures in an ecohydrodynamic model system. Nonlinear Processes in Geophysics, 1, 3-11. Malchow, H. (1996). Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system. Journal of Marine Systems, 7, 193-202. Mandelbrot, B. B. (1977). Fractals. Form, chance, and dimension (1st edition). San Francisco: Freeman. Mandelbrot, B. B. (1983). The fractal geometry of nature (1st edition). San Francisco: Freeman. Misund, O. A., Vilhjlmsson, H., Hjálti i Jákupsstovu, S., Røttingen, I., Belikov, S., Asthorson, O., Blindheim, J., Jónsson, J., Krysov, A., Malmberg, S. A., & Sveinbjørnsson, S. (1998). Distribution, migration and abundance of Norwegian spring spawning herring in relation to the temperature and zooplankton biomass in the Norwegian Sea as recorded by coordinated surveys in spring and summer 1996. SARSIA, 83, 117-127. Morisita, M. (1971). Measuring of habitat value by the “environmental density” method. In C. D. Patil, E. C. Pielou & W. E. Waters (Eds.), Statistical ecology (Vol. 1, pp. 379-401). University Park, PA: The Pennsylvania State University Press. Murray, J. D. (1977). Lectures on nonlinear differential-equation models in biology (1st edition). Oxford: Clarendon Press. Nakata, K., & Ishikawa, R. (1975). Fluctuation of local phytoplankton abundance in coastal waters. Japanese Journal of Ecology, 25, 201-205. Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems (1st edition). New York: Wiley. Okubo, A. (1980). Diffusion and ecological problems: Mathematical models (1st edition). Biomathematics, Vol. 10. Berlin: Springer-Verlag. Pascual, M. (1993). Diffusion-induced chaos in a spatial predator-prey system. Proceedings of the Royal Society of London, B 251, 1-7. Powell, T. M., Richerson, P. J., Dillon, T. M., Agee, B. A., Dozier, B. J., Godden, D. A., & Myrup, L. O. (1975). Spatial scales of current speed and phytoplankton biomass fluctuations in Lake Tahoe. Science, 189, 1088-1090. Radakov, D. V. (1973). Schooling in the ecology of fish (1st edition). New York: Halsted Press. Ruohonen, M. (1978). Estimation of the diffusion in a two-dimensional diffusion model. Report No. 86 of the Institute of Applied Mathematics. Turku: University of Turku. Ruth, M., & Hannon, B. (1997). Modeling dynamic economic systems (1st edition). New York: Springer-Verlag. Savill, N. J., & Hogeweg, P. (1997). Modelling morphogenesis: From single cells to crawling slugs. Journal of Theoretical Biology, 184, 229-235. Scheffer, M. (1991). Fish and nutrients interplay determines algal biomass: A minimal model. OIKOS, 62, 271-282. Scheffer, M. (1998). Ecology of shallow lakes (1st edition). Population and Community Biology Series, Vol. 22. London: Chapman & Hall. Scheffer, M., Baveco, J. M., DeAngelis, D. L., Rose, K. A., & van Nes, E. H. (1995). Superindividuals a simple solution for modelling large populations on an individual basis. Ecological Modelling, 80, 161-170. Scheffer, M., Rinaldi, S., Kuznetsov, Yu, A., & van Nes, E. H. (1997). Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. OIKOS, 80, 519-532. Segel, L. A., & Jackson, J. L. (1972). Dissipative structure: An explanation and an ecological example. Journal of Theoretical Biology, 37, 545-559. Shigesada, N., & Teramoto, E. (1978). A consideration on the theory of environmental density. Japanese Journal of Ecology, 28, 1-8. Shlesinger, M., Zaslavsky, G. M., & Frisch, U., (Eds.). (1995). Lévy flights and related topics in physics (1st edition). Lecture Notes in Physics, Vol. 450. New York: Springer-Verlag. Steele, J. H. (1974). The structure of marine ecosystems (1st edition). Oxford: Blackwell Scientific Publishers. Steele, J. H., & Henderson, E. W. (1981). A simple plankton model. American Naturalist, 117, 676-691. Steele, J. H., & Henderson, E. W. (1992). A simple model for plankton patchiness. Journal of Plankton Research, 14, 1397-1403. Steffen, E., Malchow, H., & Medvinskii, A. B. (1997). Effects of seasonal perturbations on a model plankton community. Environmental Modeling & Assessment, 2, 43-48. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, B 237, 37-72. Weidlich, W., & Haag, G. (1983). Concepts and models of a quantitative sociology: The dynamics of interacting populations (1st edition). Springer Series in Synergetics, Vol. 14. Berlin: Springer-Verlag. Weidlich, W., & Haag, G., (Eds.). (1988). Interregional migration. Dynamic theory and comparative analysis (1st edition). Berlin: Springer-Verlag. Winfree, A. T. (1980). The geometry of biological time (1st edition). Biomathematics, Vol. 8. New York: Springer-Verlag. Winfree, A. T. (1987). When time breaks down (1st edition). Princeton: Princeton University Press. Wroblewski, J. S., & O'Brien, J. J. (1976). A spatial model of phytoplankton patchiness. Marine Biology, 35, 161-175. Wyatt, T. (1971). Production dynamics of Oikopleura dioica in the Southern North Sea, and the role of fish larvae which prey on them. Thalassia Jugoslavica, 7, 435-444. Wyatt, T. (1973). The biology of Oikopleura dioica and Fritillaria borealis in the Southern Bight. Marine Biology, 22, 137-158.