First virtual screening and experimental validation of inhibitors targeting GES-5 carbapenemase
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tondi D, Cross S, Venturelli A et al (2016) Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore. Curr Drug Targets 17:983–1005. https://doi.org/10.2174/1389450116666151001104448
Cantón R, Akóva M, Carmeli Y et al (2012) Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18:413–431. https://doi.org/10.1111/j.1469-0691.2012.03821.x
Naas T, Poirel L, Nordmann P (2008) Minor extended-spectrum beta-lactamases. Clin Microbiol Infect. https://doi.org/10.1111/j.1469-0691.2007.01861.x
Weldhagen GF (2006) Genetic stability of class 1 integron-borne blaGES-type genes under short-term in vitro antibiotic stress. Int J Antimicrob Agents 28:481–483. https://doi.org/10.1016/j.ijantimicag.2006.08.012
Smith CA, Nossoni Z, Toth M et al (2016) Role of the conserved disulfide bridge in class A carbapenemases. J Biol Chem 291:22196–22206. https://doi.org/10.1074/jbc.M116.749648
Smith CA, Frase H, Toth M et al (2012) Structural basis for progression toward the carbapenemase activity in the GES family of β-lactamases. J Am Chem Soc 134:19512–19515. https://doi.org/10.1021/ja308197j
Stewart NK, Smith CA, Frase H et al (2015) Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases. Biochemistry 54:588–597. https://doi.org/10.1021/bi501052t
Chihi H, Bonnin RA, Bourouis A et al (2016) GES-11-producing Acinetobacter baumannii clinical isolates from Tunisian hospitals: long-term dissemination of GES-type carbapenemases in North Africa. J Glob Antimicrob Resist 5:47–50. https://doi.org/10.1016/j.jgar.2016.03.005
Bonnin RA, Jousset AB, Urvoy N et al (2017) Detection of GES-5 carbapenemase in Klebsiella pneumoniae, a newcomer in France. Antimicrob Agents Chemother 61:e02263–e02216. https://doi.org/10.1128/AAC.02263-16
Poirel L, Le Thomas I, Naas T et al (2000) Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother 44:622–632. https://doi.org/10.1128/AAC.44.3.622-632.2000
http://bldb.eu/BLDB.php?prot=A#GES . Accessed July 2018
Pedersen T, Sekyere JO, Govinden U et al (2018) Spread of plasmid-encoded NDM-1 and GES-5 carbapenemases among extensively drug-resistant and pandrug-resistant clinical enterobacteriaceae in durban, South Africa. Antimicrob Agents Chemother 62:e02178–e02117. https://doi.org/10.1128/AAC.02178-17
Castillo-Vera J, Ribas-Aparicio RM, Nicolau CJ et al (2012) Unusual diversity of acquired β-lactamases in multidrug-resistant Pseudomonas aeruginosa Isolates in a Mexican Hospital. Microb Drug Resist 18:471–478. https://doi.org/10.1089/mdr.2011.0183
Viedma E, Juan C, Acosta J et al (2009) Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum β-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother 53:4930–4933. https://doi.org/10.1128/AAC.00900-09
Smith CA, Caccamo M, Kantardjieff KA, Vakulenko S (2007) Structure of GES-1 at atomic resolution: insights into the evolution of carbapenamase activity in the class A extended-spectrum β-lactamases. Acta Crystallogr D 63:982–992. https://doi.org/10.1107/S0907444907036955
Santucci M, Spyrakis F, Cross S et al (2017) Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Sci Rep 7:17716. https://doi.org/10.1038/s41598-017-17399-7
Spyrakis F, Celenza G, Marcoccia F et al (2017) Structure-based virtual screening for the discovery of novel inhibitors of New Delhi metallo-β-lactamase-1. ACS Med Chem Lett 9:45–50. https://doi.org/10.1021/acsmedchemlett.7b00428
Baroni M, Cruciani G, Sciabola S et al (2007) A common reference framework for analyzing/comparing proteins and ligands. fingerprints for ligands and proteins (FLAP): theory and application. J Chem inf Model 47:279–294. https://doi.org/10.1021/ci600253e
Spyrakis F, Cellini B, Bruno S et al (2014) Targeting cystalysin, a virulence factor of Treponema denticola-supported periodontitis. ChemMedChem 9:1501–1511. https://doi.org/10.1002/cmdc.201300527
Spyrakis F, Singh R, Cozzini P et al (2013) Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. PLoS ONE 8:e77558. https://doi.org/10.1371/journal.pone.0077558
Milletti F, Storchi L, Goracci L et al (2010) Extending pKa prediction accuracy: high-throughput pK a measurements to understand pKa modulation of new chemical series. Eur J Med Chem 45:4270–4279. https://doi.org/10.1016/j.ejmech.2010.06.026
Spyrakis F, Felici P, Bayden AS et al (2013) Fine tuning of the active site modulates specificity in the interaction of O-acetylserine sulfhydrylase isozymes with serine acetyltransferase. Biochim Biophys Acta: Proteins Proteom 1834:169–181. https://doi.org/10.1016/j.bbapap.2012.09.009
Wade RC, Goodford PJ (1989) The role of hydrogen-bonds in drug binding. Prog Clin Biol Res 289:433–444. https://doi.org/10.1007/0-387-29148-2_2
Quotadamo A, Linciano P, Davoli P et al (2016) An improved synthesis of CENTA, a chromogenic substrate for β-lactamases. Synlett 27:2447–2450. https://doi.org/10.1055/s-0035-1562454
Feng BY, Shoichet BK (2006) A detergent-based assay for the detection of promiscuous inhibitors. Nat Protoc 1:550–553. https://doi.org/10.1038/nprot.2006.77
Yung-Chi C, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108. https://doi.org/10.1016/0006-2952(73)90196-2
Spyrakis F, Benedetti P, Decherchi S et al (2015) A pipeline to enhance ligand virtual screening: integrating molecular dynamics and fingerprints for ligand and proteins. J Chem Inf Model 26:2256–2274. https://doi.org/10.1021/acs.jcim.5b00169
Krishnan NP, Nguyen NQ, Papp-Wallace KM et al (2015) Inhibition of Klebsiella β-lactamases (SHV-1 and KPC-2) by avibactam: a structural study. PLoS ONE 10:e0136813. https://doi.org/10.1371/journal.pone.0136813
Celenza G, Vicario M, Bellio P et al (2018) Phenylboronic acid derivatives as validated leads active in clinical strains overexpressing KPC-2: a step against bacterial resistance. ChemMedChem 13:713–724. https://doi.org/10.1002/cmdc.201700788
Tondi D, Venturelli A, Bonnet R et al (2014) Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative. J Med Chem 57:5449–5458. https://doi.org/10.1021/jm5006572
Farina D, Spyrakis F, Venturelli A et al (2014) The inhibition of extended spectrum β-lactamases: hits and leads. Curr Med Chem 21:1405–1434. https://doi.org/10.2174/09298673113206660323
Genovese F, Lazzari S, Venturi E et al (2017) Design, synthesis and biological evaluation of non-covalent AmpC β-lactamases inhibitors. Med Chem Res 26:975–986. https://doi.org/10.1007/s00044-017-1809-x
Klein R, Linciano P, Celenza G et al (2018) In silico identification and experimental validation of hits active against KPC-2 β-lactamase. PLoS ONE 13:e0203241. https://doi.org/10.1371/journal.pone.0203241
Strynadka NCJ, Adachi H, Jensen SE et al (1992) Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature 359:700–705. https://doi.org/10.1038/359700a0
Swarén P, Maveyraud L, Raquet X et al (1998) X-ray analysis of the NMC-A beta-lactamase at 1.64-A resolution, a class A carbapenemase with broad substrate specificity. J Biol Chem 273:26714–26721. https://doi.org/10.1074/JBC.273.41.26714
Sougakoff W, L’Hermite G, Pernot L et al (2002) Structure of the imipenem-hydrolyzing class A β-lactamase SME-1 from Serratia marcescens. Acta Crystallogr D 58:267–274. https://doi.org/10.1107/S0907444901019606
Fonseca F, Chudyk EI, Van Der Kamp MW et al (2012) The basis for carbapenem hydrolysis by class a beta-lactamases: a combined investigation using crystallography and simulations. J Am Chem Soc 134:18275–18285. https://doi.org/10.1021/ja304460j
Babaoglu K, Simconov A, Irwin JJ et al (2008) Comprehensive mechanistic analysis of hits from high-throughput and docking screens against β-lactamase. J Med Chem 51:2502–2511. https://doi.org/10.1021/jm701500e
Tondi D, Morandi F, Bonnet R et al (2005) Structure-based optimization of a non-beta-lactam lead results in inhibitors that do not up-regulate beta-lactamase expression in cell culture. J Am Chem Soc 127:4632–4639. https://doi.org/10.1021/ja042984o
Zhu T, Cao S, Su PC et al (2013) Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J Med Chem 56:6560–6572. https://doi.org/10.1021/jm301916b
Balakin KV, Savchuk NP, Tetko IV (2006) In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr Med Chem 13:223–241. https://doi.org/10.2174/092986706775197917
Tondi D, Powers RA, Caselli E et al (2001) Structure-based design and in-parallel synthesis of inhibitors of AmpC β-lactamase. Chem Biol 8:593–611. https://doi.org/10.1016/S1074-5521(01)00034-5
Venturelli A, Tondi D, Cancian L et al (2007) Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy. J Med Chem 50:5644–5654. https://doi.org/10.1021/jm070643q