First time to exit of a continuous Itô process: General moment estimates and ${\mathrm{L}}_{1}$-convergence rate for discrete time approximations
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] Avikainen, R. (2007). Convergence rates for approximations of functionals of SDEs. Preprint. Available at <a href="arXiv:0712.3635">arXiv:0712.3635</a>.
[3] Baldi, P. and Caramellino, L. (2002). Asymptotics of hitting probabilities for general one-dimensional pinned diffusions. <i>Ann. Appl. Probab.</i> <b>12</b> 1071–1095.
[5] Bichteler, K. (2002). <i>Stochastic Integration with Jumps. Encyclopedia of Mathematics and Its Applications</i> <b>89</b>. Cambridge: Cambridge Univ. Press.
[6] Bouchard, B. and Menozzi, S. (2009). Strong approximations of BSDEs in a domain. <i>Bernoulli</i> <b>15</b> 1117–1147.
[7] Buchmann, F.M. and Petersen, W.P. (2006). An exit probability approach to solving high dimensional Dirichlet problems. <i>SIAM J. Sci. Comput.</i> <b>28</b> 1153–1166 (electronic).
[8] Buckwar, E. (2000). Introduction to the numerical analysis of stochastic delay differential equations. <i>J. Comput. Appl. Math.</i> <b>125</b> 297–307.
[9] Deaconu, M. and Lejay, A. (2006). A random walk on rectangles algorithm. <i>Methodol. Comput. Appl. Probab.</i> <b>8</b> 135–151.
[10] Faure, O. (1992). Simulation du mouvement brownien et des diffusions. Ph.D. thesis. Available at <a href="http://pastel.archives-ouvertes.fr/docs/00/52/32/58/PDF/1992TH_FAURE_O_NS15977.pdf">http://pastel.archives-ouvertes.fr/docs/00/52/32/58/PDF/1992TH_FAURE_O_NS15977.pdf</a>.
[11] Freidlin, M. (1985). <i>Functional Integration and Partial Differential Equations. Annals of Mathematics Studies</i> <b>109</b>. Princeton, NJ: Princeton Univ. Press.
[12] Fukasawa, M. (2011). Discretization error of stochastic integrals. <i>Ann. Appl. Probab.</i> <b>21</b> 1436–1465.
[14] Giles, M.B. (2008). Multilevel Monte Carlo path simulation. <i>Oper. Res.</i> <b>56</b> 607–617.
[16] Gobet, E. (2001). Euler schemes and half-space approximation for the simulation of diffusion in a domain. <i>ESAIM Probab. Stat.</i> <b>5</b> 261–297 (electronic).
[18] Gobet, E. and Maire, S. (2005). Sequential control variates for functionals of Markov processes. <i>SIAM J. Numer. Anal.</i> <b>43</b> 1256–1275 (electronic).
[19] Gobet, E. and Menozzi, S. (2004). Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme. <i>Stochastic Process. Appl.</i> <b>112</b> 201–223.
[20] Gobet, E. and Menozzi, S. (2007). Discrete sampling of functionals of Itô processes. In <i>Séminaire de Probabilités XL. Lecture Notes in Math.</i> <b>1899</b> 355–374. Springer, Berlin.
[21] Gobet, E. and Menozzi, S. (2010). Stopped diffusion processes: Boundary corrections and overshoot. <i>Stochastic Process. Appl.</i> <b>120</b> 130–162.
[22] Gyöngy, I. and Millet, A. (2005). On discretization schemes for stochastic evolution equations. <i>Potential Anal.</i> <b>23</b> 99–134.
[23] Heath, D., Jarrow, R. and Morton, A. (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. <i>Econometrica</i> <b>60</b>.
[25] Higham, D.J., Mao, X., Roj, M., Song, Q. and Yin, G. (2013). Mean exit times and the multilevel Monte Carlo method. <i>SIAM/ASA J. Uncertain. Quantificat.</i> <b>1</b> 2–18.
[26] Jansons, K.M. and Lythe, G.D. (2005). Multidimensional exponential timestepping with boundary test. <i>SIAM J. Sci. Comput.</i> <b>27</b> 793–808 (electronic).
[29] Milstein, G.N. (1996). The simulation of phase trajectories of a diffusion process in a bounded domain. <i>Stochastics Stochastics Rep.</i> <b>56</b> 103–125.
[30] Milstein, G.N. (1997). Weak approximation of a diffusion process in a bounded domain. <i>Stochastics Stochastics Rep.</i> <b>62</b> 147–200.
[31] Milstein, G.N. (1998). On the mean-square approximation of a diffusion process in a bounded domain. <i>Stochastics Stochastics Rep.</i> <b>64</b> 211–233.
[32] Milstein, G.N. and Tretyakov, M.V. (1999). Simulation of a space-time bounded diffusion. <i>Ann. Appl. Probab.</i> <b>9</b> 732–779.
[33] Muller, M.E. (1956). Some continuous Monte Carlo methods for the Dirichlet problem. <i>Ann. Math. Stat.</i> <b>27</b> 569–589.
[34] Newton, N.J. (1990). An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times. <i>Stochastics Stochastics Rep.</i> <b>29</b> 227–258.
[36] Shiryaev, A.N. (2008). <i>Optimal Stopping Rules. Stochastic Modelling and Applied Probability</i> <b>8</b>. Berlin: Springer.
[37] Shreve, S.E. and Soner, H.M. (1994). Optimal investment and consumption with transaction costs. <i>Ann. Appl. Probab.</i> <b>4</b> 609–692.
[38] Zein, S., Lejay, A. and Deaconu, M. (2010). An efficient algorithm to simulate a Brownian motion over irregular domains. <i>Commun. Comput. Phys.</i> <b>8</b> 901–916.
[4] Bensoussan, A. and Lions, J.-L. (1984). <i>Impulse Control and Quasivariational Inequalities</i>. Montrouge: Gauthier-Villars.
[13] Gilbarg, D. and Trudinger, N.S. (2001). <i>Elliptic Partial Differential Equations of Second Order. Classics in Mathematics</i>. Berlin: Springer.
[24] Heinrich, S. (2001). Multilevel Monte-Carlo methods. In <i>Large-Scale Scientific Computing</i> 58–67. Springer.
[27] Kloeden, P.E. and Platen, E. (1992). <i>Numerical Solution of Stochastic Differential Equations. Applications of Mathematics</i> (<i>New York</i>) <b>23</b>. Berlin: Springer.
[28] Maruyama, G. (1955). Continuous Markov processes and stochastic equations. <i>Rend. Circ. Mat. Palermo</i> (2) <b>4</b> 48–90.
[35] Revuz, D. and Yor, M. (2005). <i>Continuous Martingales and Brownian Motion</i>. Berlin: Springer.
[15] Gobet, E. (2000). Weak approximation of killed diffusion using Euler schemes. <i>Stochastic Process. Appl.</i> <b>87</b> 167–197.
[2] Baldi, P. (1995). Exact asymptotics for the probability of exit from a domain and applications to simulation. <i>Ann. Probab.</i> <b>23</b> 1644–1670.