First return maps for the dynamics of synaptically coupled conditional bursters
Tóm tắt
Từ khóa
Tài liệu tham khảo
Altendorfer R, Koditschek D, Holmes P (2003) Stability analyisis of legged locomotion by symmetry-factored return maps. Int J Robot Res 23: 979–999
Best J, Borisyuk A, Rubin J, Terman D, Welschselberger M (2005) The dynamic range of bursting in a model respiratory pacemaker network. SIAM J Appl Dyn Syst 4: 1107–1139
Butera R, Rinzel J, Smith J (1999a) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82: 382–397
Butera R, Rinzel J, Smith J (1999b) Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Population of coupled pacemaker. J Neurophysiol 82: 398–415
Channell P Jr., Cymbalyuk G, Shilnikov A (2007) Applications of the poincaré mapping technique to analysis of neuronal dynamics. Neurocomputing 70: 2107–2111
Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic β-cell. Biophys J 42: 181–190
Dunmyre JR, Rubin JE (2009) Optimal intrinsic dynamics for bursting in a three-cell network. SIAM J Dyn Syst 9: 154–187
Ermentrout B (2002) Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Software Environ. Tools 14, SIAM, Philadelphia
Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci USA 95(3): 1259–1264
Gomes AA, Manica E, Varriale MC (2008) Applications of chaos control techniques to a three-species food chain. Chaos Solitons Fractals 35: 432–441
Hitczenko P, Medvedev GS (2009) Bursting oscillations induced by small noise. SIAM J Appl Math 69: 1359–1392
Innocenti G, Genesio R (2009) On the dynamics of chaotic spiking- bursting transition in the Hindmarsh-Rose neuron. Chaos 19: 023124
Kuznetsov YA (1995) Elements of applied bifurcation theory, vol 112 of Applied Mathematical Sciences. Springer-Verlag, Berlin
LoFaro T, Kopell N (1999) Timing regulation in a network reduced from voltage-gated equations to a one-dimensional map. J Math Biol 38: 479–533
Medvedev GS (2005) Reduction of a model of an excitable cell to a one-dimensional map. Physica D 202: 37–59
Milik A, Szmolyan P, Löffelmann H, Gröller E (1998) Geometry of mixed-mode oscillations in the 3-d autocatalator. Int J Bifurc Chaos 8: 505–519
Pedersen MG Sørensen MP (2006/07) The effect of noise in β-cell burst period. SIAM J Appl Math 67(2):530–542 (electronic), 2006/07
Pontryagin LS, Rodygin LV (1960) Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing the derivatives. Sov Math Dokl 1: 611–614
Rinzel J (1985) Bursting oscillations in an excitable membrane model. In: Sleeman BD, Jarvis RJ (eds) Ordinary and partial differential equations. Springer-Verlag, Berlin, pp 304–316
Rinzel J, Troy WC (1982a) Bursting phenomena in a simplified oregonator flow system d activity an model. J Chem Phys 76: 1775–1789
Rinzel J, Troy WC (1982b) A one-variable map analysis of bursting in the belousov-zhabotinskii reaction. Lect Notes Biomath 51: 1–23
Rubin JE (2006) Bursting induced by excitatory synaptic coupling in non-identical conditional relaxation oscillators or square-wave bursters. Phys Rev E 74: 021917
Rulkov NF (2002) Modeling of spiking-bursting neural behavior using two-dimensional map. Phys Rev E 65: 041922–041930
Rulkov NF (2004) Oscillations in large-scale cortical networks: map-based model. J Comput Neurosci 17: 203–223
Smith JC, Ellenberger HH, Ballayi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254: 726–729
Terman D (1991) Chaotic spikes arising from a model for bursting in excitable membranes. SIAM J Appl Math 51: 1418–1450
Terman D (1992) The transition from bursting to continuous spiking in an excitable membrane model. J Nonlinear Sci 2: 133–182
The MathWorks, Inc (2008) MATLAB The Language of Technical Computing, version 7.6.0.324(r2008a) edition