First-principles study on electronic and optical properties of sn-doped topological insulator Bi2Se3

Computational and Theoretical Chemistry - Tập 1225 - Trang 114170 - 2023
Shuang Zheng1, Zhiqiang Li1, Tengfei Lu1, Jiajun Wang1, Yaru Wang1, Yan Cui1, Zhihua Zhang1, Ming He2, Bo Song3
1School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028, P.R. China
2School of Physics and Materials Engineering, Dalian Minzu University, Dalian,116600, P.R. China
3Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150080, P.R. China

Tài liệu tham khảo

Brahlek, 2011, Surface versus bulk state in topological insulator Bi2Se3 under environmental disorder [J], Appl. Phys. Lett., 99, 10.1063/1.3607484 Urazhdin, 2004, Surface effects in layered semiconductors Bi2Se3 and Bi2Te3 [J], Phys. Rev. B, 69, 10.1103/PhysRevB.69.085313 Ciftci, 2021, Pressure effects on electronic, elastic, and vibration properties of metallic antiperovskite PbNCa3 by ab initio calculations [J], J. Mol. Model., 27, 1, 10.1007/s00894-020-04656-2 Lind, 2005, Structure and bonding properties of (Bi2Se3)m(Bi2)n stacks by first-principles density functional theory [J], Phys. Rev. B, 72, 184101, 10.1103/PhysRevB.72.184101 Antonova, 2021, Growth of Bi2Se3/graphene heterostructures with the room temperature high carrier mobility [J], J. Mater Sci, 56, 9330, 10.1007/s10853-021-05836-y G.M. Stephen, I Naumov, S. Tyagi, A, Owen, Vail, J.E. DeMell, M. Dreyer, R.E. Butera, A.T. Hanbicki, P.J. Taylor, I. Mayergoyz, P. Dev, and A.L. Friedman, Effect of Sn Doping on Surface States of Bi2Se3 Thin Films [J]. J. Phys. Chem. C 124 (2020) 27082-27088. Azimova, 2020, Effect of the Se → Te substitutions on thermal properties of binary Bi2Se3 semiconductor, Mode [J]. Phys. Lett. B, 34, 2050156, 10.1142/S0217984920501560 Lee, 2014, Preparation and thermoelectric properties of iodine-doped Bi2Te3-Bi2Se3 solid solutions [J], J. Korean. Phys. Soc., 65, 696, 10.3938/jkps.65.696 Kharade, 2013, Room temperature deposition of nanostructured Bi2Se3 thin films for photoelectrochemical application: effect of chelating agents [J], New J. Chem., 37, 2821, 10.1039/c3nj00463e Desai, 2018, Surfactant mediated synthesis of bismuth selenide thin films for photoelectrochemical solar cell applications [J], J. Colloid Interface Sci., 514, 250, 10.1016/j.jcis.2017.12.038 Subramanyam, 2021, TiO2 photoanodes sensitized with Bi2Se3 nanoflowers for visible–near-infrared photoelectrochemical water splitting [J], ACS Appl. Nano Mater., 4, 739, 10.1021/acsanm.0c03041 Zhou, 2022, Vacancies and electronic effects enhanced photoelectrochemical activity of Cu-doped Bi2Se3 for efficient CO2 reduction to formate [J], J. Allo. Compd., 903 Wang, 2021, Photosensing and characterizing of the pristine and In-, Sn-doped Bi2Se3 nanoplatelets fabricated by thermal V-S process [J], Nanomaterials, 11, 1352, 10.3390/nano11051352 Hor, 2009, p-type Bi2Se3 for topological insulator and low temperature thermoelectric applications [J], Phys. Rev. B, 79, 10.1103/PhysRevB.79.195208 Schlenk, 2012, Controllable magnetic doping of the surface state of a topological insulator [J], Phys. Rev. Lett., 110 Kuroda, 2010, Hexagonally Deformed Fermi Surface of the 3D Topological Insulator Bi2Se3 [J], Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.076802 Horák, 1997, Point defects in Pb-doped Bi2Se3 single crystals [J], Radiat. Eff. Defect. S., 140, 181, 10.1080/10420159708216844 Wiendlocha, 2016, Resonant Levels, Vacancies, and Doping in Bi2Te3, Bi2Te2Se, and Bi2Se3Tetradymites [J], J. Electron. Mater., 45, 3515, 10.1007/s11664-016-4502-9 Long, 2009, Geometric and Electronic Properties of Sn-Doped TiO2 from First-Principles Calculations [J], J. Phys. Chem. C, 113, 650, 10.1021/jp8043708 Khan, 2022, First principle investigations of structural, electronic, and optical properties of N- and Sn-doped MgSiP2 [J], Int. J. Energy. Res., 46, 1978, 10.1002/er.7217 Lu, 2021, Enhanced thermoelectric performance of BiSe by Sn doping and ball milling [J], Ceram. Int., 47, 26375, 10.1016/j.ceramint.2021.06.048 Sun, 2014, Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties [J], Sci Rep., 4, 4794, 10.1038/srep04794 Milman, 2000, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study [J], Int. J. Quantum Chem., 77, 895, 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C Hammer, 1999, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J], Phys. Rev. B, 59, 7413, 10.1103/PhysRevB.59.7413 Wu, 2008, Reply to “Comment on 'More accurate generalized gradient approximation for solids'” [J], Phys. Rev. B, 78, 10.1103/PhysRevB.78.197102 Tse, 2015, The first principle study: Electronic and optical properties in Bi2Se3 [J], Computational Condensed Matter, 4, 59, 10.1016/j.cocom.2015.09.001 Zhao, 2013, Demonstration of surfae transport in a hybrid Bi2Se3/Bi2Te3 heterostructure [J], Sci. Rep., 3, 3060, 10.1038/srep03060 Mishra, 1997, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide [J], Phys. Condens. Matter, 9, 461, 10.1088/0953-8984/9/2/014 Ptok, 2021, Electronic properties of Bi2Se3 dopped by 3d transition metal (Mn, Fe Co, or Ni) ions [J], Phys. Condens. Matter, 33, 10.1088/1361-648X/abba6a Crowley, 2015, Accurate Ab Initio Quantum Mechanics Simulations of Bi2Se3 and Bi2Te3 Topological Insulator Surfaces [J], J. Phys. Chem. Lett., 6, 3792, 10.1021/acs.jpclett.5b01586 Cui, 2019, Investigations on ferromagnetism of Li and Mn codoped LiZnN by first-principles calculations [J], J. Am. Ceram. Soc., 102, 303, 10.1111/jace.15900 Gold, 1954, Direct Cellular Evaluation of the Density of States in Phase Space and the Accurate Calculation of Fermi Levels [J]. J. L. Gold, J. Appl. Phys., 25, 1278, 10.1063/1.1721544 Gao, 2016, First-principles study of structural, elastic, electronic and thermodynamic properties of topological insulator Bi2Se3 under pressure [J], Philos. Mag., 96, 208, 10.1080/14786435.2015.1128126 Gou, 2009, Structural stability and elastic and electronic properties of rhenium borides: first principle investigations [J], Inorg. Chem., 48, 581, 10.1021/ic8019606 Li, 2013, Structural, electronic and thermodynamic properties of R3ZnH5 (R= K, Rb, Cs): A first-principle calculation [J], J. Solid State Chem., 198, 433, 10.1016/j.jssc.2012.11.003 Segall, 1996, Population analysis of plane-wave electronic structure calculations of bulk materials [J], Phys. Rev. B, 54, 16317, 10.1103/PhysRevB.54.16317 Iwasaki, 2020, Band engineering in Al-TM (TM=Rh, Ir) quasicrystalline approximants via alloying and enhancement of thermoelectric properties [J], J. Alloys Compd., 851 Chen, 2014, Broadband optical and microwave nonlinear response in topological insulator [J], Opti. Mater. Express, 4, 587, 10.1364/OME.4.000587 Rizwan, 2021, First-principles investigation of structural, electronic, and optical response of SnZrO3 with Al inclusion for optoelectronic applications [J], Phys. Soliod State, 63, 134, 10.1134/S1063783421010182 Huang, 2022, A density functional study of the structural, electronic, optical and lattice dynamical properties of AgGaS2 [J], Results Phys., 35, 10.1016/j.rinp.2022.105309 Khalfallah, 2018, A first-principles study of the structural, elastic, electronic, vibrational, and optical properties of BaSe(1–x)Tex [J], J. Comput. Electron., 17, 1478, 10.1007/s10825-018-1249-y Bakar, 2022, Ab-initio study for the elastic stability, mechanical, electronic and optical properties of RuCrX (X = Si, Ge, Sn) half Heusler alloys [J], Phys. Scr., 97, 10.1088/1402-4896/ac7176