First-principles study on electronic and optical properties of sn-doped topological insulator Bi2Se3
Tài liệu tham khảo
Brahlek, 2011, Surface versus bulk state in topological insulator Bi2Se3 under environmental disorder [J], Appl. Phys. Lett., 99, 10.1063/1.3607484
Urazhdin, 2004, Surface effects in layered semiconductors Bi2Se3 and Bi2Te3 [J], Phys. Rev. B, 69, 10.1103/PhysRevB.69.085313
Ciftci, 2021, Pressure effects on electronic, elastic, and vibration properties of metallic antiperovskite PbNCa3 by ab initio calculations [J], J. Mol. Model., 27, 1, 10.1007/s00894-020-04656-2
Lind, 2005, Structure and bonding properties of (Bi2Se3)m(Bi2)n stacks by first-principles density functional theory [J], Phys. Rev. B, 72, 184101, 10.1103/PhysRevB.72.184101
Antonova, 2021, Growth of Bi2Se3/graphene heterostructures with the room temperature high carrier mobility [J], J. Mater Sci, 56, 9330, 10.1007/s10853-021-05836-y
G.M. Stephen, I Naumov, S. Tyagi, A, Owen, Vail, J.E. DeMell, M. Dreyer, R.E. Butera, A.T. Hanbicki, P.J. Taylor, I. Mayergoyz, P. Dev, and A.L. Friedman, Effect of Sn Doping on Surface States of Bi2Se3 Thin Films [J]. J. Phys. Chem. C 124 (2020) 27082-27088.
Azimova, 2020, Effect of the Se → Te substitutions on thermal properties of binary Bi2Se3 semiconductor, Mode [J]. Phys. Lett. B, 34, 2050156, 10.1142/S0217984920501560
Lee, 2014, Preparation and thermoelectric properties of iodine-doped Bi2Te3-Bi2Se3 solid solutions [J], J. Korean. Phys. Soc., 65, 696, 10.3938/jkps.65.696
Kharade, 2013, Room temperature deposition of nanostructured Bi2Se3 thin films for photoelectrochemical application: effect of chelating agents [J], New J. Chem., 37, 2821, 10.1039/c3nj00463e
Desai, 2018, Surfactant mediated synthesis of bismuth selenide thin films for photoelectrochemical solar cell applications [J], J. Colloid Interface Sci., 514, 250, 10.1016/j.jcis.2017.12.038
Subramanyam, 2021, TiO2 photoanodes sensitized with Bi2Se3 nanoflowers for visible–near-infrared photoelectrochemical water splitting [J], ACS Appl. Nano Mater., 4, 739, 10.1021/acsanm.0c03041
Zhou, 2022, Vacancies and electronic effects enhanced photoelectrochemical activity of Cu-doped Bi2Se3 for efficient CO2 reduction to formate [J], J. Allo. Compd., 903
Wang, 2021, Photosensing and characterizing of the pristine and In-, Sn-doped Bi2Se3 nanoplatelets fabricated by thermal V-S process [J], Nanomaterials, 11, 1352, 10.3390/nano11051352
Hor, 2009, p-type Bi2Se3 for topological insulator and low temperature thermoelectric applications [J], Phys. Rev. B, 79, 10.1103/PhysRevB.79.195208
Schlenk, 2012, Controllable magnetic doping of the surface state of a topological insulator [J], Phys. Rev. Lett., 110
Kuroda, 2010, Hexagonally Deformed Fermi Surface of the 3D Topological Insulator Bi2Se3 [J], Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.076802
Horák, 1997, Point defects in Pb-doped Bi2Se3 single crystals [J], Radiat. Eff. Defect. S., 140, 181, 10.1080/10420159708216844
Wiendlocha, 2016, Resonant Levels, Vacancies, and Doping in Bi2Te3, Bi2Te2Se, and Bi2Se3Tetradymites [J], J. Electron. Mater., 45, 3515, 10.1007/s11664-016-4502-9
Long, 2009, Geometric and Electronic Properties of Sn-Doped TiO2 from First-Principles Calculations [J], J. Phys. Chem. C, 113, 650, 10.1021/jp8043708
Khan, 2022, First principle investigations of structural, electronic, and optical properties of N- and Sn-doped MgSiP2 [J], Int. J. Energy. Res., 46, 1978, 10.1002/er.7217
Lu, 2021, Enhanced thermoelectric performance of BiSe by Sn doping and ball milling [J], Ceram. Int., 47, 26375, 10.1016/j.ceramint.2021.06.048
Sun, 2014, Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties [J], Sci Rep., 4, 4794, 10.1038/srep04794
Milman, 2000, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study [J], Int. J. Quantum Chem., 77, 895, 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
Hammer, 1999, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J], Phys. Rev. B, 59, 7413, 10.1103/PhysRevB.59.7413
Wu, 2008, Reply to “Comment on 'More accurate generalized gradient approximation for solids'” [J], Phys. Rev. B, 78, 10.1103/PhysRevB.78.197102
Tse, 2015, The first principle study: Electronic and optical properties in Bi2Se3 [J], Computational Condensed Matter, 4, 59, 10.1016/j.cocom.2015.09.001
Zhao, 2013, Demonstration of surfae transport in a hybrid Bi2Se3/Bi2Te3 heterostructure [J], Sci. Rep., 3, 3060, 10.1038/srep03060
Mishra, 1997, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide [J], Phys. Condens. Matter, 9, 461, 10.1088/0953-8984/9/2/014
Ptok, 2021, Electronic properties of Bi2Se3 dopped by 3d transition metal (Mn, Fe Co, or Ni) ions [J], Phys. Condens. Matter, 33, 10.1088/1361-648X/abba6a
Crowley, 2015, Accurate Ab Initio Quantum Mechanics Simulations of Bi2Se3 and Bi2Te3 Topological Insulator Surfaces [J], J. Phys. Chem. Lett., 6, 3792, 10.1021/acs.jpclett.5b01586
Cui, 2019, Investigations on ferromagnetism of Li and Mn codoped LiZnN by first-principles calculations [J], J. Am. Ceram. Soc., 102, 303, 10.1111/jace.15900
Gold, 1954, Direct Cellular Evaluation of the Density of States in Phase Space and the Accurate Calculation of Fermi Levels [J]. J. L. Gold, J. Appl. Phys., 25, 1278, 10.1063/1.1721544
Gao, 2016, First-principles study of structural, elastic, electronic and thermodynamic properties of topological insulator Bi2Se3 under pressure [J], Philos. Mag., 96, 208, 10.1080/14786435.2015.1128126
Gou, 2009, Structural stability and elastic and electronic properties of rhenium borides: first principle investigations [J], Inorg. Chem., 48, 581, 10.1021/ic8019606
Li, 2013, Structural, electronic and thermodynamic properties of R3ZnH5 (R= K, Rb, Cs): A first-principle calculation [J], J. Solid State Chem., 198, 433, 10.1016/j.jssc.2012.11.003
Segall, 1996, Population analysis of plane-wave electronic structure calculations of bulk materials [J], Phys. Rev. B, 54, 16317, 10.1103/PhysRevB.54.16317
Iwasaki, 2020, Band engineering in Al-TM (TM=Rh, Ir) quasicrystalline approximants via alloying and enhancement of thermoelectric properties [J], J. Alloys Compd., 851
Chen, 2014, Broadband optical and microwave nonlinear response in topological insulator [J], Opti. Mater. Express, 4, 587, 10.1364/OME.4.000587
Rizwan, 2021, First-principles investigation of structural, electronic, and optical response of SnZrO3 with Al inclusion for optoelectronic applications [J], Phys. Soliod State, 63, 134, 10.1134/S1063783421010182
Huang, 2022, A density functional study of the structural, electronic, optical and lattice dynamical properties of AgGaS2 [J], Results Phys., 35, 10.1016/j.rinp.2022.105309
Khalfallah, 2018, A first-principles study of the structural, elastic, electronic, vibrational, and optical properties of BaSe(1–x)Tex [J], J. Comput. Electron., 17, 1478, 10.1007/s10825-018-1249-y
Bakar, 2022, Ab-initio study for the elastic stability, mechanical, electronic and optical properties of RuCrX (X = Si, Ge, Sn) half Heusler alloys [J], Phys. Scr., 97, 10.1088/1402-4896/ac7176