First-principles study of the effects of interstitial H and point vacancies on the photocatalytic performance of Be/Mg/Ca-doped GaN
Tài liệu tham khảo
Martin, 2010, Electronic structure of GaN and Ga investigated by soft x-ray spectroscopy and first-principles methods, Phys. Rev. B, 81, 85125, 10.1103/PhysRevB.81.085125
Hou, 2020, Effcts of point vacancy and interstitial H on the carrier activity, separation, and absorption spectrum of ZnO: Li/Na/K, Vacuum, 179, 109499, 10.1016/j.vacuum.2020.109499
Nozaki, 2008, High-quality oxide formed by evaporation of SiO nanopowder: application to MOSFETs on plastic substrates and GaN epilayers, Mater. Sci. Semicond. Process., 11, 384, 10.1016/j.mssp.2008.11.005
Wu, 2000, Negative electron affinity and electron emission at cesiated GaN and AlN surfaces, Appl. Surf. Sci., 162–163, 250, 10.1016/S0169-4332(00)00200-2
Brault, 2013, Ultra-violet GaN/Al0.5Ga0.5N quantum dot based light emitting diodes, J. Cryst. Growth, 363, 282, 10.1016/j.jcrysgro.2012.11.015
Wang, 2017, Theoretical study on structure and electronic structure of GaN doped with Mg, J. Sichuan Univ., 54, 997
Shi, 2018, Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents, Adv. Mater., 30, 1705941, 10.1002/adma.201705941
Tao, 2018, Bismuth tantalum oxyhalogen: a promising candidate photocatalyst for solar water splitting, Adv. Energy. Mater., 8, 1701392, 10.1002/aenm.201701392
Li, 2020, Exploration on electronic and optical properties of two-dimensional GaN-doped with Be, Mg, Zn, Int. J. Mod. Phys. B, 34, 2050195, 10.1142/S0217979220501957
Li, 2017, Influence of point defects on optical properties of GaN-based materials by first-principle study, Comput. Mater. Sci., 129, 49, 10.1016/j.commatsci.2016.12.017
Ju, 2019, Research on photoelectric properties of n-GaN (0001) surface with point defects via first-principles, Opt. Quant. Electron., 51, 211, 10.1007/s11082-019-1940-7
Hu, 2009, Time-dependent density functional theory study on optical properties of GaN doped with alkaline-earth atom, J. Mol. Struct.: THEOCHEN., 900, 27, 10.1016/j.theochem.2008.12.016
Hirai, 2011, Emission spectroscopy of divalent-cation-doped GaN photocatalysts, J. Appl. Phys., 110, 113526, 10.1063/1.3665225
Koschnick, 2000, Optically detected magnetic resonance study of defects in undoped, Be-doped, and Mg-doped GaN, J. Electron. Mater., 29, 1351, 10.1007/s11664-000-0118-0
Tsuge, 2017, Impact of Mg-ion implantation with various fluence ranges on optical properties of n-type GaN, Nucl. Instrum. Methods Phys. Res. B., 409, 50, 10.1016/j.nimb.2017.07.021
Monteiro, 2001, Green and red emission in Ca implanted GaN samples, Physica B, 308–310, 42, 10.1016/S0921-4526(01)00664-0
Neugebauer, 1996, Role of hydrogen in doping of GaN, Appl. Phys. Lett., 68, 1829, 10.1063/1.116027
Nakano, 2017, Generation of electrical damage in n-GaN films following treatment in a CF4 plasma, APEX, 10, 116201, 10.7567/APEX.10.116201
Segall, 2002, First principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Chem. Lett.: Condens. Matter., 14, 2717
Clark, 2005, First-principles methods using CASTEP, Z. Kristallogr., 220, 567, 10.1524/zkri.220.5.567.65075
Gulebaglan, 2014, The bowing parameters of CaxMg1-xO ternary alloys, J. Mod. Phys., 5, 1546, 10.4236/jmp.2014.515155
Carlos, 2019, Study of the reactivity of (100) felodipine surface model based on DFT concepts, J. Phys. Chem., 9, 1
Zhang, 2018, First-principle study on the electronic structure and optical properties of two dimensional GaN, J. Synth. Cryst., 47, 2624
Lethole, 2020, Structural, thermodynamic, electronic and mechanical properties of spinel and phonon-harvested AMn2O4 (a: Li, Na, Mg) systems: a First-Principles study, Mater. Today. Commun., 22, 100704, 10.1016/j.mtcomm.2019.100704
Er, 2014, Ti3C2 Mxenes as high capacity electrode materials for metal (Li, Na, K, Ca) ion batteries, Appl. Mater Interfaces, 6, 11173, 10.1021/am501144q
Xu, 2020, Electrical properties and conduction mechanisms of K, Ga co-substituted Na0.5Bi0.5TiO3 ferroelectrics, Ceram. Int., 46, 22321, 10.1016/j.ceramint.2020.05.312
Van de Walle, 2001, First-principles studies of beryllium doping of GaN, Phys. Rev. B, 63, 245205, 10.1103/PhysRevB.63.245205
Wardle, 2005, Theory of Li in ZnO: a limitation for Li-based p-type doping, Phys. Rev. B, 71, 155205, 10.1103/PhysRevB.71.155205
Na, 2006, First-principles study of native defects in anatase TiO2, Phys. Rev. B, 73, 125205, 10.1103/PhysRevB.73.125205
Valentin, 2010, Electronic structure of (Ga1-xZnx) N1-xOx photocatalyst for water splitting by hybrid Hartree-Fock density functional theory methods, J. Phys. Chem. C, 114, 7054, 10.1021/jp9112552
Chen, 2010, W doped anatase TiO2 Transparent conductive oxide films: theory and experiment, J. Appl. Phys., 107, 63707, 10.1063/1.3326940
Shao, 2019, Electronic structure and optical properties of Cu-doped SnO2, Ferroelectrics, 547, 137, 10.1080/00150193.2019.1592493
Sun, 2005, Ab initio investigations of optical properties of the high-pressure phases of Zn, Phys. Rev. B, 71, 125132, 10.1103/PhysRevB.71.125132
Gajdoš, 2006, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B, 73, 45112, 10.1103/PhysRevB.73.045112
Maggard, 2003, Alignment of acentric MoO3F33 anions in a polar material: (Ag3MoOT3F3(Ag3MoO4)Cl), J. Solid State Chem., 175, 27, 10.1016/S0022-4596(03)00090-2
Pires, 1990, Carrier freeze out in silicon, Cryogenics, 30, 1064, 10.1016/0011-2275(90)90208-T
Yu, 2013, Photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles, Phys. Chem. Chem. Phys., 15, 12040, 10.1039/c3cp44651d
Suzuki, 1997, First-principles calculation of effective mass parameters of GaN, Solid State Electron., 41, 271, 10.1016/S0038-1101(96)00227-4
Ma, 2013, Insights into the adsorption and energy transfer of Ag clusters on the AgCl(100) surface, Chem. Phys., 15, 8722
Linsebigler, 1995, Photocatalysis on TiO2 surfaces: principles, mechanism, and selected results, Chem. Rev., 95, 735, 10.1021/cr00035a013
Ren, 2020, Theoretical prediction of two-dimensional ZnO/GaN van der Waals heterostructure as a photocatalyst for water splitting, Chem. Phys., 528, 110539, 10.1016/j.chemphys.2019.110539