First-principles study of the effects of interstitial H and point vacancies on the photocatalytic performance of Be/Mg/Ca-doped GaN

Vacuum - Tập 187 - Trang 110119 - 2021
Xiang Yin1, Qingyu Hou1,2, Hao Chen1
1College of Science, Inner Mongolia University of Technology, Hohhot, 010051, PR China
2Inner Mongolia Key Laboratory of Thin Film and Coatings, School of Materials Science and Engineering, Inner Mongolia University of Technology, PR China

Tài liệu tham khảo

Martin, 2010, Electronic structure of GaN and Ga investigated by soft x-ray spectroscopy and first-principles methods, Phys. Rev. B, 81, 85125, 10.1103/PhysRevB.81.085125 Hou, 2020, Effcts of point vacancy and interstitial H on the carrier activity, separation, and absorption spectrum of ZnO: Li/Na/K, Vacuum, 179, 109499, 10.1016/j.vacuum.2020.109499 Nozaki, 2008, High-quality oxide formed by evaporation of SiO nanopowder: application to MOSFETs on plastic substrates and GaN epilayers, Mater. Sci. Semicond. Process., 11, 384, 10.1016/j.mssp.2008.11.005 Wu, 2000, Negative electron affinity and electron emission at cesiated GaN and AlN surfaces, Appl. Surf. Sci., 162–163, 250, 10.1016/S0169-4332(00)00200-2 Brault, 2013, Ultra-violet GaN/Al0.5Ga0.5N quantum dot based light emitting diodes, J. Cryst. Growth, 363, 282, 10.1016/j.jcrysgro.2012.11.015 Wang, 2017, Theoretical study on structure and electronic structure of GaN doped with Mg, J. Sichuan Univ., 54, 997 Shi, 2018, Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents, Adv. Mater., 30, 1705941, 10.1002/adma.201705941 Tao, 2018, Bismuth tantalum oxyhalogen: a promising candidate photocatalyst for solar water splitting, Adv. Energy. Mater., 8, 1701392, 10.1002/aenm.201701392 Li, 2020, Exploration on electronic and optical properties of two-dimensional GaN-doped with Be, Mg, Zn, Int. J. Mod. Phys. B, 34, 2050195, 10.1142/S0217979220501957 Li, 2017, Influence of point defects on optical properties of GaN-based materials by first-principle study, Comput. Mater. Sci., 129, 49, 10.1016/j.commatsci.2016.12.017 Ju, 2019, Research on photoelectric properties of n-GaN (0001) surface with point defects via first-principles, Opt. Quant. Electron., 51, 211, 10.1007/s11082-019-1940-7 Hu, 2009, Time-dependent density functional theory study on optical properties of GaN doped with alkaline-earth atom, J. Mol. Struct.: THEOCHEN., 900, 27, 10.1016/j.theochem.2008.12.016 Hirai, 2011, Emission spectroscopy of divalent-cation-doped GaN photocatalysts, J. Appl. Phys., 110, 113526, 10.1063/1.3665225 Koschnick, 2000, Optically detected magnetic resonance study of defects in undoped, Be-doped, and Mg-doped GaN, J. Electron. Mater., 29, 1351, 10.1007/s11664-000-0118-0 Tsuge, 2017, Impact of Mg-ion implantation with various fluence ranges on optical properties of n-type GaN, Nucl. Instrum. Methods Phys. Res. B., 409, 50, 10.1016/j.nimb.2017.07.021 Monteiro, 2001, Green and red emission in Ca implanted GaN samples, Physica B, 308–310, 42, 10.1016/S0921-4526(01)00664-0 Neugebauer, 1996, Role of hydrogen in doping of GaN, Appl. Phys. Lett., 68, 1829, 10.1063/1.116027 Nakano, 2017, Generation of electrical damage in n-GaN films following treatment in a CF4 plasma, APEX, 10, 116201, 10.7567/APEX.10.116201 Segall, 2002, First principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Chem. Lett.: Condens. Matter., 14, 2717 Clark, 2005, First-principles methods using CASTEP, Z. Kristallogr., 220, 567, 10.1524/zkri.220.5.567.65075 Gulebaglan, 2014, The bowing parameters of CaxMg1-xO ternary alloys, J. Mod. Phys., 5, 1546, 10.4236/jmp.2014.515155 Carlos, 2019, Study of the reactivity of (100) felodipine surface model based on DFT concepts, J. Phys. Chem., 9, 1 Zhang, 2018, First-principle study on the electronic structure and optical properties of two dimensional GaN, J. Synth. Cryst., 47, 2624 Lethole, 2020, Structural, thermodynamic, electronic and mechanical properties of spinel and phonon-harvested AMn2O4 (a: Li, Na, Mg) systems: a First-Principles study, Mater. Today. Commun., 22, 100704, 10.1016/j.mtcomm.2019.100704 Er, 2014, Ti3C2 Mxenes as high capacity electrode materials for metal (Li, Na, K, Ca) ion batteries, Appl. Mater Interfaces, 6, 11173, 10.1021/am501144q Xu, 2020, Electrical properties and conduction mechanisms of K, Ga co-substituted Na0.5Bi0.5TiO3 ferroelectrics, Ceram. Int., 46, 22321, 10.1016/j.ceramint.2020.05.312 Van de Walle, 2001, First-principles studies of beryllium doping of GaN, Phys. Rev. B, 63, 245205, 10.1103/PhysRevB.63.245205 Wardle, 2005, Theory of Li in ZnO: a limitation for Li-based p-type doping, Phys. Rev. B, 71, 155205, 10.1103/PhysRevB.71.155205 Na, 2006, First-principles study of native defects in anatase TiO2, Phys. Rev. B, 73, 125205, 10.1103/PhysRevB.73.125205 Valentin, 2010, Electronic structure of (Ga1-xZnx) N1-xOx photocatalyst for water splitting by hybrid Hartree-Fock density functional theory methods, J. Phys. Chem. C, 114, 7054, 10.1021/jp9112552 Chen, 2010, W doped anatase TiO2 Transparent conductive oxide films: theory and experiment, J. Appl. Phys., 107, 63707, 10.1063/1.3326940 Shao, 2019, Electronic structure and optical properties of Cu-doped SnO2, Ferroelectrics, 547, 137, 10.1080/00150193.2019.1592493 Sun, 2005, Ab initio investigations of optical properties of the high-pressure phases of Zn, Phys. Rev. B, 71, 125132, 10.1103/PhysRevB.71.125132 Gajdoš, 2006, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B, 73, 45112, 10.1103/PhysRevB.73.045112 Maggard, 2003, Alignment of acentric MoO3F33 anions in a polar material: (Ag3MoOT3F3(Ag3MoO4)Cl), J. Solid State Chem., 175, 27, 10.1016/S0022-4596(03)00090-2 Pires, 1990, Carrier freeze out in silicon, Cryogenics, 30, 1064, 10.1016/0011-2275(90)90208-T Yu, 2013, Photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles, Phys. Chem. Chem. Phys., 15, 12040, 10.1039/c3cp44651d Suzuki, 1997, First-principles calculation of effective mass parameters of GaN, Solid State Electron., 41, 271, 10.1016/S0038-1101(96)00227-4 Ma, 2013, Insights into the adsorption and energy transfer of Ag clusters on the AgCl(100) surface, Chem. Phys., 15, 8722 Linsebigler, 1995, Photocatalysis on TiO2 surfaces: principles, mechanism, and selected results, Chem. Rev., 95, 735, 10.1021/cr00035a013 Ren, 2020, Theoretical prediction of two-dimensional ZnO/GaN van der Waals heterostructure as a photocatalyst for water splitting, Chem. Phys., 528, 110539, 10.1016/j.chemphys.2019.110539