First principles study of field effect device through van der Waals and lateral heterostructures of graphene, phosphorene and graphane
Tài liệu tham khảo
Huo, 2015, 2d materials via liquid exfoliation: a review on fabrication and applications, Sci. Bull., 60, 1994, 10.1007/s11434-015-0936-3
Akinwande, 2017, A review on mechanics and mechanical properties of 2d materials―graphene and beyond, Extreme Mechanics Letters, 13, 42, 10.1016/j.eml.2017.01.008
Vijayaraghavan, 2013, 39
Manzeli, 2017, 2d transition metal dichalcogenides, Nature Reviews Materials, 2, 17033, 10.1038/natrevmats.2017.33
Batmunkh, 2016, Phosphorene and phosphorene-based materials – prospects for future applications, Adv. Mater., 28, 8586, 10.1002/adma.201602254
Han, 2014, An unexplored 2d semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z
Cassabois, 2016, Hexagonal boron nitride is an indirect bandgap semiconductor, Nat. Photon., 10, 262, 10.1038/nphoton.2015.277
Son, 2016, Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor, Nat. Commun., 7, 13261, 10.1038/ncomms13261
Xu, 2020, Engineering field effect transistors with 2d semiconducting channels: status and prospects, Adv. Funct. Mater., 30, 1901971, 10.1002/adfm.201901971
Nourbakhsh, 2016, Mos2 field-effect transistor with sub-10 nm channel length, Nano Lett., 16, 7798, 10.1021/acs.nanolett.6b03999
Das, 2014, Ambipolar phosphorene field effect transistor, ACS Nano, 8, 11730, 10.1021/nn505868h
Akhtar, 2017, Recent advances in synthesis, properties, and applications of phosphorene, npj 2D Materials and Applications, 1, 5, 10.1038/s41699-017-0007-5
Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35
Ziletti, 2015, Phosphorene oxides: bandgap engineering of phosphorene by oxidation, Phys. Rev. B, 91, 10.1103/PhysRevB.91.085407
Babar, 2019, Mechanistic insights in phosphorene degradation, Phys. Rev. Materials, 3, 10.1103/PhysRevMaterials.3.074008
Cai, 2015, Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures, J. Phys. Chem. C, 119, 13929, 10.1021/acs.jpcc.5b02634
Pei, 2017, Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der waals heterostructures, Phys. Chem. Chem. Phys., 19, 17180, 10.1039/C7CP02553J
Shemella, 2009, Electronic structure and band-gap modulation of graphene via substrate surface chemistry, Appl. Phys. Lett., 94, 10.1063/1.3070238
Liu, 2012, Strategies for chemical modification of graphene and applications of chemically modified graphene, J. Mater. Chem., 22, 12435, 10.1039/c2jm31218b
Bekyarova, 2012, Advances in the chemical modification of epitaxial graphene, J. Phys. Appl. Phys., 45, 154009, 10.1088/0022-3727/45/15/154009
Wen, 2011, Graphane sheets and crystals under pressure, Proc. Natl. Acad. Sci. Unit. States Am., 108, 6833, 10.1073/pnas.1103145108
Leenaerts, 2010, First-principles investigation of graphene fluoride and graphane, Phys. Rev. B, 82, 10.1103/PhysRevB.82.195436
Zhou, 2014, Graphene's cousin: the present and future of graphane, Nanoscale Research Letters, 9, 26, 10.1186/1556-276X-9-26
Hourahine, 2020, Dftb+, a software package for efficient approximate density functional theory based atomistic simulations, J. Chem. Phys., 152, 124101, 10.1063/1.5143190
Wang, 2007, Nonequilibrium quantum transport properties of a silver atomic switch, Nano Lett., 7, 2688, 10.1021/nl0711054
Wang, 2008, Excess-silver-induced bridge formation in a silver sulfide atomic switch, Appl. Phys. Lett., 93, 152106, 10.1063/1.2963197
Gu, 2009, First-principles simulations on bulk ta2o5 and cu/ta2o5/pt heterojunction: electronic structures and transport properties, J. Appl. Phys., 106, 103713, 10.1063/1.3260244
Pecchia, 2008, Non-equilibrium greens functions in density functional tight binding: method and applications, New J. Phys., 10, 10.1088/1367-2630/10/6/065022
Haug, 2008
Dmitry, 2016
tranasorg/opensuite. Tranas opensuite. 2020.
cp2k.org Cp2k (development version). 2020.
Padilha, 2015, Van der waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.066803
Ziletti, 2015, Oxygen defects in phosphorene, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.046801
Lv, 2018, Sulfur-doped black phosphorus field-effect transistors with enhanced stability, ACS Appl. Mater. Interfaces, 10, 9663, 10.1021/acsami.7b19169
Junhua, 2019, Sulfur-doped phosphorene as a promising anode for na and k-ion batteries, Phys. Status Solidi, 256, 1800418, 10.1002/pssb.201800418