First-principles investigation of the structural and dynamical stability, electronic and thermal properties of two-dimensional Yn+1Cn (n = 1, 2, and 3) MXenes
Tài liệu tham khảo
Mas Balleste, 2011, 2D materials: to graphene and beyond, Nanoscale, 3, 20, 10.1039/C0NR00323A
Akinwande, 2017, A review on mechanics and mechanical properties of 2D materials—Graphene and beyond, Extreme Mech. Lett., 13, 42, 10.1016/j.eml.2017.01.008
Novoselov, 2016, 2D materials and van der Waals heterostructures, Science, 353, 1, 10.1126/science.aac9439
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Ramakrishna Matte, 2010, MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed., 49, 4059, 10.1002/anie.201000009
Terrones, 2013, Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides, Sci. Rep., 3, 1, 10.1038/srep01549
Tang, 2013, Graphene-analogous low-dimensional materials, Prog. Mater Sci., 58, 1244, 10.1016/j.pmatsci.2013.04.003
Park, 2020, Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials, InfoMat, 2, 33, 10.1002/inf2.12047
Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385
Naguib, 2014, 25th Anniversary Article: MXenes: a new family of two-dimensional materials, Adv. Mater, 26, 992, 10.1002/adma.201304138
Sun, 2017, Two-dimensional MXenes for energy storage and conversion applications, Mater. Today Energy, 5, 22, 10.1016/j.mtener.2017.04.008
Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Meshkiana, 2015, Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C, Scr. Mater, 108, 147, 10.1016/j.scriptamat.2015.07.003
Yang, 2016, Two-dimensional Nb-based M4C3 solid solutions (MXenes), J. Am. Ceram. Soc., 99, 660, 10.1111/jace.13922
Urbankowski, 2016, Synthesis of two-dimensional titanium nitride Ti4N3 (MXene), Nanoscale, 8, 11385, 10.1039/C6NR02253G
Srivastava, 2016, Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 Mxene, ACS Appl. Mater. Interfaces, 8, 24256, 10.1021/acsami.6b08413
Xie, 2014, J. Am. Chem. Soc., 136, 385
Mashtalir, 2013, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4, 1, 10.1038/ncomms2664
Hou, 2016, Two-dimensional Y2C electride: a promising anode material for Na-Ion batteries, J. Phys. Chem. C, 120, 18473, 10.1021/acs.jpcc.6b06087
Liang, 2015, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries, Angew. Chem., 127, 3979, 10.1002/ange.201410174
Zhao, 2015, Fabrication of layered Ti 3 C 2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries, J. Mater. Chem. A, 3, 7870, 10.1039/C4TA07101H
Rao, 2017, Mechanism on the improved performance of lithium-sulfur batteries with MXene-based additives, J. Phys. Chem. C, 121, 11047, 10.1021/acs.jpcc.7b00492
Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two dimensional titanium carbide, Science, 34, 510
Ghidiu, 2014, Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970
Sinha, 2018, MXene: an emerging material for sensing and biosensing, TrAC, Trends Anal. Chem., 105, 424, 10.1016/j.trac.2018.05.021
Rasool, 2016, Antibacterial activity of Ti3C2T x MXene, ACS Nano, 10, 3674, 10.1021/acsnano.6b00181
Dai, 2017, Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia, Chem. Mater., 29, 8637, 10.1021/acs.chemmater.7b02441
Zhang, 2014, Two-dimensional transition-metal electride Y2C, Chem. Mater., 26, 6638, 10.1021/cm503512h
Lee, 2013, Dicalcium nitride as a two-dimensional electride with an anionic electron layer, Nature, 494, 336, 10.1038/nature11812
Inoshita, 2014, Exploration for two-dimensional electrides via database screening and ab initio calculation, Phys. Rev. X, 4, 1
Perdew, 1992, Pair- distribution function and its coupling constant average for the spin-polarized electron gas, Phys. Rev. B, 46, 12947, 10.1103/PhysRevB.46.12947
J. Perdew, P. John, Kieron Burke, M. Ernzerhof. Generalized gradient approximation made simple, Phys. Rev. Lett 77 1996 3865-3568.
Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev. B, 136, 864, 10.1103/PhysRev.136.B864
Monkhorst, 1976, Special point for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Methfessel, 1989, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40, 3616, 10.1103/PhysRevB.40.3616
F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30 1944 244-247.
Giannozzi, 2009, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Phys. Condens. Matter, 21, 10.1088/0953-8984/21/39/395502
Zangh, 2009, Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study, Phys. Rev. B, 80
Benkabou, 2018, Structural, electronic, optical and thermodynamic investigations of NaXF3 (X =Ca and Sr): First-principles calculations, Chin. J. Phys., 56, 131, 10.1016/j.cjph.2017.12.008
Atoji, 1969, Crystal structures of cubic and trigonal yttrium hypocarbides; a dimorphically interphased single-crystal study, J. Chem. Phys., 51, 3863, 10.1063/1.1672603
Maehlen, 2003, Structural studies of deuterides of yttrium carbide, J. Alloy. Compd., 351, 151, 10.1016/S0925-8388(02)01028-9
He, 2016, The structural, electronic, elastic and thermodynamics properties of 2D transition-metal electride Y2C via first-principles calculations, J. Alloy. Compd., 654, 180, 10.1016/j.jallcom.2015.09.133
Li, 2020, Pressure-induced band engineering, work function and optical properties of surface F-functionalized Sc2C MXene, J. Phys. Chem. Solids, 137, 1, 10.1016/j.jpcs.2019.109218
Behzadi, 2021, Electronic and optical properties of two-dimensional As2GeTe and P2SiS monolayers: Density functional study, Chem. Phys., 547, 1, 10.1016/j.chemphys.2021.111215
Yue, 2017, Fe2C monolayer: an intrinsic ferromagnetic MXene, J. Magn. Magn. Mater., 434, 164, 10.1016/j.jmmm.2017.03.058
Aliakbari, 2021, Structural, elastic, electronic, thermal, and phononic properties of yttrium carbide: first-principles calculations, Mater. Chem. Phys., 270, 1, 10.1016/j.matchemphys.2021.124744
Daoud, 2019, High-temperature and high-pressure thermophysical properties of AlP semiconducting material: a systematic ab initio study, Chem. Phys., 525, 1, 10.1016/j.chemphys.2019.110399
Renner, 2007
Naumis, 2005, Energy landscape and rigidity, Phys. Rev. E, 71, 10.1103/PhysRevE.71.026114
Tayebi, 2017, Pressure and temperature dependence of the structural, elastic and thermodynamic properties of potassium telluride: first-principles calculations, Chin. J. Phys., 55, 769, 10.1016/j.cjph.2016.09.010
Parlinski, 2011, phonon calculated from first-principles, EDP Sci., 12, 161
M.W. Zemansky, “Heat and Thermodynamics”, New York, Chapter 11, p. 275 (1968).
Jasiukiewicz, 2003, Debye temperature of cubic crystals, Solid State Commun., 128, 167, 10.1016/j.ssc.2003.08.008
Tohei, 2006, Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations, Phys. Rev. B, 73, 1, 10.1103/PhysRevB.73.064304