First-principles calculations of structural, elastic, electronic, and optical properties of CaYP (Y = Cu, Ag) Heusler alloys
Tóm tắt
Từ khóa
Tài liệu tham khảo
R.A. De Groot, F.M. Muller, P.G. Van Engen, K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983). https://doi.org/10.1103/PhysRevLett.50.2024
G. Charles, P.W. Sébastien, L. Pasquier, D. Pierre Ghanbaja, J. Rojas Sánchez, J. Carlos, A. Bataille, J. Rault, P. Le Fèvre, F. Bertran, A. Stephane, Ultralow magnetic damping in Co2Mn-based heusler compounds: Promising materials for spintronics. Phys. Rev. A 11, 0640091–0640105 (2019). https://doi.org/10.1103/PhysRevApplied.11.064009
S. Li, K.V. Larionov, P. Zakhar, W. Takahiro, A. Kenta, E. Shiro, A. Pavel, S. Yuya, N. Hiroshi, S. Pavel, S. Seiji, Graphene, Halfmetallic Heusler alloy: A novel heterostructure toward high-performance graphene spintronic devices. Adv. Mater. 1, 1905734–1905739 (2019). https://doi.org/10.1002/adma.201905734
D.M. Hoat, N. Mosayeb, Examining the half-metallicity and thermoelectric properties of new equiatomic quaternary Heusler compound CoRhGe: Under pressure. Physic B583, 412058–412064 (2020). https://doi.org/10.1016/j.physb.2020.412058
K. Özdoğan, E. Şaşıoğlu, I. Galanakis, Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors. J. Appl. Phys. 113, 193903–193910 (2013). https://doi.org/10.1063/1.4805063
S. Yousuf, D.C. Gupta, Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: Spin-polarized DFT + U approach. Mater. Sci. Eng. B 221, 73–79 (2017). https://doi.org/10.1016/j.mseb.2017.04.004
R. Weiss, R. Mattheis, G. Reiss, Advanced giant magnetoresistance technology for measurement applications. Meas. Sci. Technol. 24(8), 082001 (2013). https://doi.org/10.1088/0957-0233/24/8/082001
O. Amrich, A. Monir, Half-Metallic Ferrimagnetic Characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: A DFT study. J. Supercond. Nov. Magn. 31, 241–250 (2018). https://doi.org/10.1007/s10948-017-4206-2
C. Song, R. Zhang, L. Liao, Y. Zhou, X. Zhou, R. Chen, Y. You, X. Chen, F. Pan, Spin-orbit torques: materials, mechanisms, performances, and potential applications. J. Progr. Mater. Sci. 118, 100761 (2020). https://doi.org/10.1016/j.pmatsci.2020.100761
X. Tan, J. You, P.-F. Liu, Y. Wang, Theoretical study of the electronic, magnetic, mechanical and thermodynamic properties of the spin gapless semiconductor CoFeMnSi. Crystals 9(12), 678 (2019). https://doi.org/10.3390/cryst9120678
Alijani V, Ouardi S, Fecher G, Winterlik H, Naghavi J, Kozina S, Kobayashi X, (2011) Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMnZ (Z=Al, Ga, Si, Ge): Phys. Rev. B 84 22-31 doi:10.1103/physrevb.84.224416
G. Xu, Z. Liu, E.K. Du, Y. Li, G.J. Liu, G.D. Wang, A new spin gapless semiconductors family: Quaternary Heusler compounds. Europhys. Lett. 102, 17007–17012 (2013). https://doi.org/10.1209/0295-5075/102/17007
L. Bainsla, A. Mallick, I. Raja, M. Nigam, A.K. Varaprasad, B.S.D.C.S. Takahashi, Y.K. Hono, Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy. Phys. Rev. B 91, 10–19 (2015). https://doi.org/10.1103/physrevb.91.104408
F. Belkharroubi, F. Khelfaoui, K. Amara, N. Marbouh, M. Ameri, Y. Abderrahmane, Robust half metallicity state with the hydrostatic and tetragonal distortion for a new quaternary Heusler ZrTiRhGa: FP-LAPW calculations. Phys. B Condens. Matter 12, 037–045 (2018). https://doi.org/10.1016/j.physb.2018.12.037
S. Chatterjee, D. Subarna, S. Pramanick, S. Chatterjee, S. Giri, A. Banerjee, S. Majumdar, Anomalous transport and magnetic behaviours of the quaternary Heusler compounds CoFeTiSn and CoFeVGa. J. Magn. Magn. Mater. 478, 155–160 (2019) https://hal.archives-ouvertes.fr/hal-01016988v2
B.G. Yalcin, Ground state properties and thermoelectric behavior of Ru2VZ (Z=Si, Ge, Sn) half-metallic ferromagnetic full-Heusler compounds. J. Magn. Magn. Mater. 408, 137–146 (2016). https://doi.org/10.1016/j.jmmm.2016.02.064
A. Maafa, H. Rozale, A. Oughilas, A. Boubaça, A. Amar, D. Lucache, Theoretical study of the electronic properties of X2YZ (X = Fe, Co; Y = Zr, Mo; Z = Ge, Sb) ternary Heusler. Ab initio Study J Ann. West Univ. Timisoara – Phys. (2020). https://doi.org/10.2478/awutp-2020-0001
J. Bai, D. Liu, R. Huang, Z. Zhang, Y. Yang, J. Gu, Z.X. Yan, L. Zuo, Phase stability, magnetic and elastic properties of Co2NiGa alloy: A first-principles calculation. Mater. Today Commun. 22, 100810 (2020). https://doi.org/10.1016/j.mtcomm.2019.100810
Y.C. Zhang, F.X. Qin, D. Estevez, V. Franco, H.X. Peng, Structure, magnetic and magnetocaloric properties of Ni2MnGa Heusler alloy nanowires. J. Magn. Magn. Mater. 167100, 167100 (2020). https://doi.org/10.1016/j.jmmm.2020.167100
C. Wu, W. Zheng, W. Feng, W. Jiang, Band structures, magnetism, half-metallicity and elastic properties of full-Heusler alloy Cr2VSb. J. Phys. Soc. Jpn. 89(6), 064713 (2020). https://doi.org/10.7566/jpsj.89.064713
M. Ayad, F. Belkharroubi, F.Z. Boufadi, M. Khorsi, M.K. Zoubir, M. Ameri, D. Bensaid, First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa. Indian J. Phys. 54, 62–71 (2019). https://doi.org/10.1007/s12648-019-01518-3
M. Glazer, G. Burns, A.N. Glazer, Space Groups for Solid State Scientists (Academic Press, New York, 1990). https://doi.org/10.1016/0921-4534(94)91274-2
R. Majumder, S.K. Mitro, Justification of crystal stability and origin of transport properties in ternary half-Heusler ScPtBi. RSC Adv. 10(61), 37482–37488 (2020). https://doi.org/10.1039/d0ra06826h
F. Casper, T. Graf, S. Chadov, B. Balke, C. Felser, Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27, 063001–063012 (2012). https://doi.org/10.1088/0268-1242/27/6/063001
K. Berland, N. Shulumba, O. Hellman, C. Persson, O.M. Løvvik, Thermoelectric transport trends in group 4 half-Heusler alloys. J. Appl. Phys. 126, 145102–145112 (2019). https://doi.org/10.1063/1.5117288
S. Guo, S. Anand, Y. Zhang, G.J. Snyder, Vibrational entropy stabilizes distorted half-Heusler structures. Chem. Mater. 32, 4767–4773 (2020). https://doi.org/10.1021/acs.chemmater.0c01404
T. Gruhn, Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Phys. Rev. B 82, 125210–125220 (2010). https://doi.org/10.1103/PhysRevB.82.125210
S. Kacimi, H. Mehnane, A. Zaoui, I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study. J. Alloys Compd. 587, 451–458 (2014). https://doi.org/10.1016/j.jallcom.2013.10.046
Mewis ABX-Verbindungenmit A, Ni2In-Struktur Darstellung und Struktur der Verbindungen CaCuP(As), SrCuP(As), SrAgP(As) und EuCuAs: ABX Compounds with the Structure Ni2In Preparation and Crystal Structure of CaCuP(As), SrCuP(As), SrAgP(As), and EuCuAs. Institutfür Anorganische Chemie der Universität zu Köln 33, 55–63 (2014). https://doi.org/10.1515/znb-1978-0906
L. Tsetseris, Ca- and Sc-based ternary AlB2-like crystals: A first-principles study: Journal of Physics. Condens. Matter, 29045701–29045712 (2016). https://doi.org/10.1088/1361-648x/29/4/045701
A. Yamakage, Y. Yamakawa, Y. Tanaka, Y. Okamoto, Line-node dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X = P, As). J. Phys. Soc. Jpn. 85, 013708–013716 (2016). https://doi.org/10.7566/jpsj.85.013708
Y. Okamoto, T. Inohara, A. Yamakage, Y. Yamakawa, K. Takenaka, Low carrier density metal realized in candidate line-node dirac semimetals CaAgP and CaAgAs. J. Phys. Soc. Jpn. 85, 123701–123715 (2016). https://doi.org/10.7566/jpsj.85.123701
N. Xu, Y.T. Qian, Q.S. Wu, G. Autès, C.E. Matt, B.Q. Lv, M.Y. Yao, V.N. Strocov, E. Pomjakushina, K. Conder, N.C. Plumb, M. Radovic, O.V. Yazyev, T. Qian, H. Ding, J. Mesot, M. Shi, Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg(P1−xAsx). Phys. Rev. B 97, 161111–161124 (2018) https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A5225
A. Reshak, Spin-polarized second harmonic generation from the antiferromagnetic CaCoSO single crystal. Sci. Rep. 7, 46415 (2017). https://doi.org/10.1038/srep46415
A.H. Reshak, Ab initio study of TaON, an active photocatalyst under visible light irradiation. J. Phys. Chem. Chem. Phys. 16(22), 10558 (2014). https://doi.org/10.1039/c4cp00285g
G.E. Davydyuk, R.A.H. Khyzhun, H. Kamarudin, G.L. Myronchuk, S.P. Danylchuk, A.O. Fedorchuk, L.V. Piskach, M.Y. Mozolyuk, O.V. Parasyuk, Photoelectrical properties and the electronic structure of Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. J. Phys. Chem. Chem. Phys. 15, 6965 (2013). https://doi.org/10.1039/C3CP50836F
A.H. Reshak, Y.M. Kogut, A.O. Fedorchuk, O.V. Zamuruyeva, G.L. Myronchuk, O.V. Parasyuk, H. Kamarudin, S. Auluck, K.J. Plucinski, J. Bila, Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag 0.5 Pb 1.75 Ge (S1− x Sex) 4: Experiment and theory. J. Phys. Chem. Chem. Phys. 15, 18979–18986 (2013). https://doi.org/10.1039/C3CP53431F
A.H. Reshak, D. Stys, S. Auluck IV, Kityk, Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1, 2, 4-triazole. J. Phys. Chem. Chem. Phys. 13, 2945–2952 (2011). https://doi.org/10.1039/C0CP01601B
A.H. Reshak, Specific features of electronic structures and optical susceptibilities of molybdenum oxide. J. RSC Advan. 5, 22044–22052 (2015). https://doi.org/10.1039/C5RA00081E
A.H. Reshak, Fe2MnSi x Ge 1− x: influence thermoelectric properties of varying the germanium content. J. RSC Advan. 4, 39565–39571 (2014). https://doi.org/10.1039/C4RA02669A
P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864
P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6
Blaha P, Schwarz K, Medsen G.K.H, Kvasnicka D, Luitz J, (2001) Wien2k: An augmented plane wave local orbitals program for calculating crystal properties, Techn University at Wien Austria http://www.wien2k.at/
J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13251 (1992). https://doi.org/10.1103/PhysRevB.45.13244
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3871 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401–226411 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5194 (1976). https://doi.org/10.1103/PhysRevB.13.5188
Galanakis I, Dederichs PH, (2005) Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys, in: Half-metallic Alloys, Springer, doi: https://doi.org/10.1007/11506256_1
F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944). https://doi.org/10.1073/pnas.30.9.244
X.T. Wang, X.F. Dai, H.Y. Jia, L.Y. Wang, X.F. Liu, Y.T. Cui, G.D. Liu, Topological insulating characteristic in half-Heusler compounds composed of light elements. Phys. Lett. A 378(22-23), 1662–1666 (2014). https://doi.org/10.1016/j.physleta.2014.04.013
H. Mebtouche, O. Baraka, A. Yakoubi, R. Khenata, S.A. Tahir, R. Ahmed, S.H. Naqib, A. Bouhemadou, S. Bin Omran, X. Wang, First-principles calculations of the structural, electronic, mechanical and thermodynamic properties of MAX Phase Mon+1GeCn (n = 1, 2, and 3). J. Comp. Mater. Today Commun. (2020). https://doi.org/10.1016/j.mtcomm.2020.101420
E. Schreiber, O.L. Anderson, N. Soga, Elastic constants and their measurements (Mc Graw-Hil, New York, 1973). https://doi.org/10.1017/S0305004100017515
D.C. Wallace, Thermodynamics of crystals. Acta Crystallogr. Sect. A29, 582–583 (1973). https://doi.org/10.1107/S0365110X5500279X
M. Born, on the stability of crystal lattices IV. Proc. Camb. Philos. Soc. 36, 466–478 (1940). https://doi.org/10.1107/S0365110X56002370
M. Born, K. Huang, Dynamical theory of crystal lattices. Acta Crystallogr. 8, 444 (1956). https://doi.org/10.1179/mst.1992.8.4.345
Born M, Huang K, (1954) Dynamical theory of crystal lattices. Clarendon Press, https://doi.org/10.4236/oalib.1100648
D. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992). https://doi.org/10.1179/mst.1992.8.4.345
E. Schreiber, O.L. Anderson, N. Soga, Elastic constants and their measurement (McGraw-Hill, New York, 1973). https://doi.org/10.1002/andp.18892741206
R. Hill, The Elastic Behaviour of a Crystalline Aggregate. Proc Phys Soc London, A 65, 349–354 (1952). https://doi.org/10.1002/zamm.19290090104
H. Hayat Ullah, F.S. Kayani, R. Khenata, Insight into the mechanical, thermal, electronic and magnetic properties of cubic lanthanide built perovskites oxides PrXO3 (X=Al, Ga). J. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab5903
S. Singh, R. Kumar, Ab-initio calculations of elastic constants and thermodynamic properties of LuAuPb and YAuPb half-heusler compounds. J. Alloys Compd. 722, 544–548 (2017). https://doi.org/10.1016/j.jallcom.2017.06.131
J.F. Nye, Propriétés physiques des matériaux. Dunod 84, 335–341 (1961). https://doi.org/10.1016/j.jallcom.2012.08.077
S. Yalameha, A. Vaez, Structural, electronic, elastic and thermodynamic properties of Al1-xZxNi (Z=Cr, V and x= 0, 0.125, 0.25) alloys: First-principle calculations journal. Comput. Conden. Matter (2019). https://doi.org/10.1016/j.cocom.2019.e00415
H.-C. Cheng, C.-F. Yu, W.-H. Chen, First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystals. J. Alloys Compd. 546, 286–295 (2013). https://doi.org/10.1016/j.jallcom.2012.08.077
B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, P.C. Schmidt, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 11, 00127–00129 (2003). https://doi.org/10.1002/andp.18892741206
A.I. Popoola, A.Y. Odusote, O.E. Ayo-Ojo, Stability and the electronic structure of XB2 (X = Pt, Ir, Pd, Rh, Os) diborides. Latv. J. Phys. Tech. Sci. 54(4), 49–57 (2017). https://doi.org/10.1515/lpts-2017-0026
M. Khan, A. Kashyap, A. Solanki, T. Nautiyal, S. Auluck, Interband optical properties of Ni3 Al. J. Phys. Rev. B 48, 1697–1705 (1993). https://doi.org/10.1103/PhysRevB.48.11789
J.S. Toll, Causality and the dispersion relation: logical foundations. Phys. Rev. 104, 1760–1772 (1956). https://doi.org/10.1103/PhysRev.104.1760
Wooten F, (2013) Optical properties of solids, Academic press https://www.sciencedirect.com/book/9780127634500/optical-properties-of-solids
H.A. Kramers, Collected scientific papers. North-Holland Publ. Comp. 178, 337–338 (1956). https://doi.org/10.1038/178337b0
P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. J. Phys. Rev. B 49, 16223–16234 (1994). https://doi.org/10.1103/PhysRevB.49.1622
B.R. Rano, I.M. Syed, S.H. Naqib, Ab initio approach to the elastic, electronic, and optical properties of MoTe2 topological Weyl semimetal. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154522
D. Allali, A. Bouhemadou, F. Zerarga, F. Sahnoune, Electronic and optical properties of the spinel oxides GeB2O4 (B= Mg, Zn and Cd): An ab-initio study. J. Nanoelectron. Optoelectron. 14, 945–952 (2019). https://doi.org/10.1166/jno.2019.2552
D. Allali, A. Bouhemadou, E.M.A. Al Safi, S. Bin-Omran, M. Chegaar, R. Khenata, A. Reshak, Electronic and optical properties of the SiB2O4 (B= Mg, Zn, and Cd) spinel oxides: An ab initio study with the Tran–Blaha-modified Becke–Johnson density functional. J. Phys. B: Condens. Matter 443, 24–34 (2014) http://www.univ-mascara.dz/Staff/cv/768.pdf
Bouchenafa, M., Benmakhlouf, A., Sidoumou, M., Bouhemadou, A., Maabed, S., Halit, M, Bentabet A, Bin-Omranf S, Khenata, R, Al-Douri, Y. Theoretical investigation of the structural, elastic, electronic, and optical properties of the ternary tetragonal tellurides KBTe2 (B = Al, In). J Mater Sci Semiconduct Process 114, 05085 (2020). https://doi.org/10.1016/j.mssp.2020.105085
M.M. Hossain, First-principles study on the structural, elastic, electronic and optical properties of LiNbO3. J. Heliyon 5(4), e01436 (2019). https://doi.org/10.1016/j.heliyon.2019.e01436
M. Naseri, D.M. Hoat, R. Ponce-Pérez, J.F. Rivas-Silva, G.H. Cocoletzi, Examining the uniform strain effect on elastic, electronic and optical properties of CsPbCl3 through FP-LAPW calculations. J. Chem. Phys. (2019). https://doi.org/10.1016/j.chemphys.2019.110654
L. Salik, A. Bouhemadou, K. Boudiaf, F.S. Saoud, S. Bin-Omran, R. Khenata, A.H. Reshak, Structural, elastic, electronic, magnetic, optical, and thermoelectric properties of the diamond-like quaternary semiconductor CuMn2InSe4. J. Supercond. Nov. Magn. 33, 1091–1102 (2019). https://doi.org/10.1007/s10948-019-05331-1
K. Bougherara, D.P. Rai, A.H. Reshak, First principles prediction of the elastic, electronic and optical properties of Sn3X4 (X= P, As, Sb, Bi) compounds: Potential photovoltaic absorbers. J. Chin. J. Phys. 59 265–272 (2019). https://doi.org/10.1016/j.cjph.2019.03.012
N.A. Noor, M. Hassan, M. Rashid, S.M. Alay-e-Abbas, A. Laref, Systematic study of elastic, electronic, optical and thermoelectric properties of cubic BiBO3 and BiAlO3 compounds at different pressure by using ab-initio calculations. J. Mater. Res. Bull. 97, 436–443 (2018). https://doi.org/10.1016/j.materresbull.2017.09.039