First-order random coefficients integer-valued threshold autoregressive processes

Han Li1, Kai Yang1, Shuhong Zhao1, Dehui Wang1
1School of Mathematics, Jilin University, Changchun, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Al-Osh, M.A., Alzaid, A.A.: First-order integer-valued autoregressive (INAR(1)) process. J. Time Ser. Anal. 8, 261–275 (1987)

Al-Osh, M.A., Alzaid, A.A.: Binomial autoregressive moving average models. Commun. Stat. Stoch. Models 7, 261–282 (1991)

Al-Osh, M.A., Alzaid, A.A.: First order autoregressive time series with negative binomial and geometric marginals. Commun. Stat. Theor. Methods 21, 2483–2492 (1992)

Alzaid, M.A., Al-Osh, A.A.: First order integer-valued autoregressive (INAR(1)) process: Distributional and regression properties. Statistica Neerlandica 42, 53–61 (1988)

Billingsley, P.: Statistical Inference for Markov Processes. The University of Chicago Press, Chicago (1961)

Du, J.G., Li, Y.: The integer-valued autoregressive (p) model. J. Time Ser. Anal. 12, 129–142 (1991)

Franke, J., Seligmann, T.: Conditional maximum likelihood estimates for INAR(1) processes and their application to modeling epileptic seizure counts. In: Subba Rao, T. (ed.) Developments in Time Series Analysis, pp. 310–330. Chapman and Hall, London (1993)

Freeland, R.K., McCabe, B.P.M.: Forecasting discrete valued low count time series. Int. J. Forecast. 20, 427–434 (2004)

Joe, H.: Time series models with univariate margins in the convolution-closed infinitely divisible class. J. Appl. Probab. 33, 664–677 (1996)

Jung, R.C., Ronning, G., Tremayne, A.R.: Estimation in conditional first order autoregression with discrete support. Stat. Papers 46, 195–224 (2005)

Klimko, L.A., Nelson, P.I.: On conditional least squares estimation for stochastic processes. Ann. Stat. 6, 629–642 (1978)

Li, D., Ling, S.: On the least squares estimation of multiple-regime threshold autoregressive models. J. Econom. 167, 240–253 (2012)

Li, D., Tong, H.: Nested sub-sample search algorithm for estimation of threshold models. Statistica Sinica 26, 1543–1554 (2016)

McKenzie, E.: Autoregressive moving-average processes with negative-binomial and geometric marginal distributions. Adv. Appl. Probab. 18, 679–705 (1986)

Monteiro, M., Scotto, M.G., Pereira, I.: Integer-valued self-exciting threshold autoregressive processes. Commun. Stat. Theor. Methods 41, 2717–2737 (2012)

Möller, T.A.: Self-exciting threshold models for time series of counts with a finite range. Stoch. Models 32, 77–98 (2016)

Möller, T.A., Silva, M.E., Weiß, C.H., et al.: Self-exciting threshold binomial autoregressive processes. AStA Adv. Stat. Anal. 100, 369–400 (2016)

Robert-Koch-Institut: SurvStat@RKI. http://www3.rki.de/SurvStat . Accessed 2014-07-02 (2014)

Scotto, M.G., Weiß, C.H., Gouveia, S.: Thinning-based models in the analysis of integer-valued time series: a review. Stat. Model. 15, 590–618 (2015)

Steutel, F., Van Harn, K.: Discrete analogues of self-decomposability and stability. Ann. Probab. 7, 893–899 (1979)

Tong, H.: On a Threshold Model. In: Chen, C.H. (ed.) Pattern Recognition and Signal Processing, pp. 575–586. Sijthoff and Noordhoff, Amsterdam (1978)

Tong, H., Lim, K.S.: Threshold autoregressive, limit cycles and cyclical data. J. R. Stat. Soc. Ser. B 42, 245–292 (1980)

Tong, H.: Threshold models in time series analysis—30 years on. Stat. Interface 4, 107–118 (2011)

Thyregod, P., Carstensen, J., Madsen, H., Arnbjerg-Nielsen, K.: Integer valued autoregressive models for tipping bucket rainfall measurements. Environmetrics 10, 295–411 (1999)

Tsay, R.S.: Testing and modeling threshold autoregressive processes. J. Am. Stat. Assoc. 84, 231–240 (1989)

Weiß, C.H.: Thinning operations for modeling time series of counts—a survey. AStA Adv. Stat. Anal. 92, 319–343 (2008)

Weiß, C.H.: The INARCH(1) model for overdispersed time series of counts. Commun. Stat. Simul. Comput. 39, 1269–1291 (2010)

Wang, C., Liu, H., Yao, J., Davis, R.A., Li, W.K.: Self-excited threshold Poisson autoregression. J. Am. Stat. Assoc. 109, 776–787 (2014)

Yang, K., Wang, D., Jia, B., Li, H.: An integer-valued threshold autoregressive process based on negative binomial thinning. Stat. Papers (2017). doi: 10.1007/s00362-016-0808-1

Yu, P.: Likelihood estimation and inference in threshold regression. J. Econom. 167, 274–294 (2012)

Zheng, H., Basawa, I.V., Datta, S.: Inference for $$p$$ p th-order random coefficient integer-valued autoregressive processes. J. Time Ser. Anal. 27, 411–440 (2006)

Zheng, H., Basawa, I.V., Datta, S.: First-order random coefficient integer-valued autoregressive process. J. Stat. Plan. Inference 137, 212–229 (2007)