First-order random coefficients integer-valued threshold autoregressive processes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Al-Osh, M.A., Alzaid, A.A.: First-order integer-valued autoregressive (INAR(1)) process. J. Time Ser. Anal. 8, 261–275 (1987)
Al-Osh, M.A., Alzaid, A.A.: Binomial autoregressive moving average models. Commun. Stat. Stoch. Models 7, 261–282 (1991)
Al-Osh, M.A., Alzaid, A.A.: First order autoregressive time series with negative binomial and geometric marginals. Commun. Stat. Theor. Methods 21, 2483–2492 (1992)
Alzaid, M.A., Al-Osh, A.A.: First order integer-valued autoregressive (INAR(1)) process: Distributional and regression properties. Statistica Neerlandica 42, 53–61 (1988)
Billingsley, P.: Statistical Inference for Markov Processes. The University of Chicago Press, Chicago (1961)
Du, J.G., Li, Y.: The integer-valued autoregressive (p) model. J. Time Ser. Anal. 12, 129–142 (1991)
Franke, J., Seligmann, T.: Conditional maximum likelihood estimates for INAR(1) processes and their application to modeling epileptic seizure counts. In: Subba Rao, T. (ed.) Developments in Time Series Analysis, pp. 310–330. Chapman and Hall, London (1993)
Freeland, R.K., McCabe, B.P.M.: Forecasting discrete valued low count time series. Int. J. Forecast. 20, 427–434 (2004)
Joe, H.: Time series models with univariate margins in the convolution-closed infinitely divisible class. J. Appl. Probab. 33, 664–677 (1996)
Jung, R.C., Ronning, G., Tremayne, A.R.: Estimation in conditional first order autoregression with discrete support. Stat. Papers 46, 195–224 (2005)
Klimko, L.A., Nelson, P.I.: On conditional least squares estimation for stochastic processes. Ann. Stat. 6, 629–642 (1978)
Li, D., Ling, S.: On the least squares estimation of multiple-regime threshold autoregressive models. J. Econom. 167, 240–253 (2012)
Li, D., Tong, H.: Nested sub-sample search algorithm for estimation of threshold models. Statistica Sinica 26, 1543–1554 (2016)
McKenzie, E.: Autoregressive moving-average processes with negative-binomial and geometric marginal distributions. Adv. Appl. Probab. 18, 679–705 (1986)
Monteiro, M., Scotto, M.G., Pereira, I.: Integer-valued self-exciting threshold autoregressive processes. Commun. Stat. Theor. Methods 41, 2717–2737 (2012)
Möller, T.A.: Self-exciting threshold models for time series of counts with a finite range. Stoch. Models 32, 77–98 (2016)
Möller, T.A., Silva, M.E., Weiß, C.H., et al.: Self-exciting threshold binomial autoregressive processes. AStA Adv. Stat. Anal. 100, 369–400 (2016)
Robert-Koch-Institut: SurvStat@RKI. http://www3.rki.de/SurvStat . Accessed 2014-07-02 (2014)
Scotto, M.G., Weiß, C.H., Gouveia, S.: Thinning-based models in the analysis of integer-valued time series: a review. Stat. Model. 15, 590–618 (2015)
Steutel, F., Van Harn, K.: Discrete analogues of self-decomposability and stability. Ann. Probab. 7, 893–899 (1979)
Tong, H.: On a Threshold Model. In: Chen, C.H. (ed.) Pattern Recognition and Signal Processing, pp. 575–586. Sijthoff and Noordhoff, Amsterdam (1978)
Tong, H., Lim, K.S.: Threshold autoregressive, limit cycles and cyclical data. J. R. Stat. Soc. Ser. B 42, 245–292 (1980)
Thyregod, P., Carstensen, J., Madsen, H., Arnbjerg-Nielsen, K.: Integer valued autoregressive models for tipping bucket rainfall measurements. Environmetrics 10, 295–411 (1999)
Tsay, R.S.: Testing and modeling threshold autoregressive processes. J. Am. Stat. Assoc. 84, 231–240 (1989)
Weiß, C.H.: Thinning operations for modeling time series of counts—a survey. AStA Adv. Stat. Anal. 92, 319–343 (2008)
Weiß, C.H.: The INARCH(1) model for overdispersed time series of counts. Commun. Stat. Simul. Comput. 39, 1269–1291 (2010)
Wang, C., Liu, H., Yao, J., Davis, R.A., Li, W.K.: Self-excited threshold Poisson autoregression. J. Am. Stat. Assoc. 109, 776–787 (2014)
Yang, K., Wang, D., Jia, B., Li, H.: An integer-valued threshold autoregressive process based on negative binomial thinning. Stat. Papers (2017). doi: 10.1007/s00362-016-0808-1
Zheng, H., Basawa, I.V., Datta, S.: Inference for $$p$$ p th-order random coefficient integer-valued autoregressive processes. J. Time Ser. Anal. 27, 411–440 (2006)