First order connections of the visual sector of the thalamic reticular nucleus in marmoset monkeys (<i>Callithrix jacchus</i>)

Visual Neuroscience - Tập 24 Số 6 - Trang 857-874 - 2007
T. Fitzgibbon1,2, Brett A. Szmajda3,2, Paul R. Martin3,2
1Discipline of Anatomy & Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, Australia
2National Vision Research Institute of Australia, Carlton, Victoria ,Australia
3Department of Optometry & Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia

Tóm tắt

The thalamic reticular nucleus (TRN) supplies an important inhibitory input to the dorsal thalamus. Previous studies in non-primate mammals have suggested that the visual sector of the TRN has a lateral division, which has connections with first-order (primary) sensory thalamic and cortical areas, and a medial division, which has connections with higher-order (association) thalamic and cortical areas. However, the question whether the primate TRN is segregated in the same manner is controversial. Here, we investigated the connections of the TRN in a New World primate, the marmoset (Callithrix jacchus). The topography of labeled cells and terminals was analyzed following iontophoretic injections of tracers into the primary visual cortex (V1) or the dorsal lateral geniculate nucleus (LGNd). The results show that rostroventral TRN, adjacent to the LGNd, is primarily connected with primary visual areas, while the most caudal parts of the TRN are associated with higher order visual thalamic areas. A small region of the TRN near the caudal pole of the LGNd (foveal representation) contains connections where first (lateral TRN) and higher order visual areas (medial TRN) overlap. Reciprocal connections between LGNd and TRN are topographically organized, so that a series of rostrocaudal injections within the LGNd labeled cells and terminals in the TRN in a pattern shaped like rostrocaudal overlapping “fish scales.” We propose that the dorsal areas of the TRN, adjacent to the top of the LGNd, represent the lower visual field (connected with medial LGNd), and the more ventral parts of the TRN contain a map representing the upper visual field (connected with lateral LGNd).

Từ khóa


Tài liệu tham khảo

10.1016/0013-4694(75)90076-0

10.1523/JNEUROSCI.05-08-02254.1985

10.1152/jn.1998.80.4.2063

10.1002/cne.10298

10.1002/cne.10568

10.1152/jn.1991.65.6.1528

10.1017/S0952523805224021

Stephan, H. , Baron, G. & Schwerdtfeger, W.K. (1980).The brain of the common Marmoset (Callithrix jacchus) A stereotaxis atlas.Springer-Verlag,Berlin.

10.1016/0006-8993(74)90895-6

10.1002/cne.10327

10.1523/JNEUROSCI.5511-05.2006

10.1007/BF00235642

10.1016/0014-4886(72)90177-X

10.1002/cne.901430107

10.1523/JNEUROSCI.17-22-08894.1997

10.1016/0306-4522(88)90161-3

10.1002/(SICI)1096-9861(19960422)368:1<57::AID-CNE5>3.0.CO;2-J

10.1002/cne.902250205

10.1016/0166-2236(92)90354-B

10.1016/0006-8993(82)90415-2

10.1002/(SICI)1096-9861(19980209)391:2<180::AID-CNE3>3.0.CO;2-Z

10.1016/j.brainresrev.2004.04.008

10.1016/0006-8993(77)90681-3

10.1016/S0306-4522(96)00417-4

10.1146/annurev.neuro.20.1.185

10.1016/0006-8993(76)90424-8

10.1002/cne.901620302

10.1016/0006-8993(80)90925-7

10.1002/cne.903100310

10.1016/S0166-2236(97)01157-0

10.1017/S0952523898154111

10.1002/(SICI)1096-9861(19990802)410:3<467::AID-CNE9>3.0.CO;2-Y

10.1017/S0952523802194120

10.1146/annurev.ne.18.030195.001205

10.1016/S0165-0173(98)00017-4

Darian-Smith, C. & FitzGibbon, T. (2000).Plots and monkey business: Further intrigue concerning the projections of the macaque thalamic reticular nucleus.Proceedings of the Australian Neuroscience Society 11,214.

10.1038/nrn811

10.1101/SQB.1990.055.01.089

10.1111/j.1460-9568.1989.tb00777.x

10.1002/(SICI)1096-9861(19980112)390:2<167::AID-CNE1>3.0.CO;2-#

10.1002/(SICI)1096-9861(19960304)366:2<207::AID-CNE2>3.0.CO;2-9

Crabtree, J.W. (1992b).The somatotopic organization within the rabbit's thalamic reticular nucleus.European Journal of Neuroscience 4,1343–1351.

10.1111/j.1460-9568.1990.tb00414.x

10.1113/jphysiol.1966.sp008085

10.1007/BF00238163

10.1016/S1388-2457(00)00398-9

Ahlsén, G. , Lindström, S. & Lo, F.-S. (1985).Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat.Experimental Brain Research 58,134–143.

10.1002/cne.900970105

Crabtree, J.W. (1992a).The somatotopic organization within the cat's thalamic reticular nucleus.European Journal of Neuroscience 4,1352–1361.

10.1523/JNEUROSCI.22-19-08754.2002

10.1111/j.1460-9568.1996.tb01205.x

10.1002/cne.902230304

10.1111/j.1460-9568.1991.tb00044.x

Steriade, M. , Jones, E.G. & McCormick, D.A. (1997).Thalamus,vol. 1.Elsevier,Amsterdam.

10.1007/BF00238784

10.1177/29.6.7252134

10.1073/pnas.95.12.7121

Raeva, S. & Lukashev, A. (1993).Unit activity in human thalamic reticularis neurons II. Activity evoked by significant and non-significant verbal or sensory stimuli.Electroencephalography and Clinical Neurophysiology 86,110–122.

10.1038/1603

10.1016/0014-4886(76)90155-2

10.1016/j.tics.2004.03.004

10.1002/cne.901870307

10.1152/physrev.1988.68.3.649

10.1002/cne.10441

FitzGibbon, T. (2006).Does the development of the perigeniculate nucleus support the notion of a hierarchical progression with the visual pathway? Neuroscience 140,529–546.

10.1016/0165-0173(79)90006-7

10.1113/jphysiol.1979.sp012761

10.1002/cne.903290404

10.1002/cne.903630311

10.1016/S0091-6773(77)90721-0

10.1002/cne.901810304