First evaluation of the population structure, genetic diversity and landscape connectivity of the Endangered Arabian tahr
Tóm tắt
The Arabian tahr (Arabitragus jayakari) occurs only in the mountains of northern Oman and the United Arab Emirates. The species is classified as Endangered due to its small declining population. In this study, we combined genetic and landscape ecology techniques in order to inform landscape scale conservation and genetic management of Arabian tahr. Using 540 base pairs of mitochondrial control region in a dataset of 53 samples, we found eight haplotypes, which fell into two haplogroups. Population genetic analysis using a panel of 14 microsatellite loci also showed a weak, but significant division. Analyses of landscape connectivity supported the genetic results showing poor connectivity between populations in the far south of the study area and those in the north. The most likely location of corridors connecting Arabian tahr populations were identified. Many corridors between tahr populations are impeded by multi-lane highways and restoration of these connections is required to maintain population viability of Arabian tahr. Owing to limited genetic samples outside of Wadi Sareen, further sampling is needed to elucidate both mtDNA and the nuclear structure of Arabian tahr more fully. Our study provides a toolkit that may be used for future genetic and connectivity monitoring of the Arabian tahr population.
Tài liệu tham khảo
Adriaensen F, Chardon JP, De Blust G et al (2003) The application of ‘least-cost’modelling as a functional landscape model. Landsc Urban Plan 64:233–247
Allendorf FW, Luikart GH, Aitken S (2012) Conservation and the genetics of populations, 2nd edn. Wiley, Hoboken
Baden AL, Mancini AN, Federman S et al (2019) Anthropogenic pressures drive population genetic structuring across a critically endangered lemur species range. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-52689-2
Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252. https://doi.org/10.1111/j.1523-1739.1998.98036.x
Belkhir K, Borsa P, Chikhi L et al (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France)
Bourgeois S, Senn H, Kaden J et al (2018) Single-nucleotide polymorphism discovery and panel characterization in the African forest elephant. Ecol Evol 8:2207–2217. https://doi.org/10.1002/ece3.3854
Catchen J, Hohenlohe PA, Bassham S et al (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140. https://doi.org/10.1111/mec.12354
Didero M, Farooq A, Nebel S, Pfaffenbach C (2019) Urban Oman: from modern to postmodern mobility in Muscat? Meta 12:87–98. https://doi.org/10.17192/meta.2019.12.7929
Dutta T, Sharma S, McRae BH et al (2016) Connecting the dots: mapping habitat connectivity for tigers in central India. Reg Environ Change 16:53–67. https://doi.org/10.1007/s10113-015-0877-z
Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7
Eng J (2014) ROC analysis: web-based calculator for ROC curves. In: Balt. Johns Hopkins Univ. https://www.jrocfit.org. Accessed 5 Dec 2019
Epps CW, Palsbøll PJ, Wehausen JD et al (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038. https://doi.org/10.1111/j.1461-0248.2005.00804.x
ESRI (2015) Redlands CA, ArcMap 10.3.1
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618. https://doi.org/10.1111/mec.13139
Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63. https://doi.org/10.1016/j.biocon.2013.12.036
Gebremedhin B, Ficetola GF, Naderi S et al (2009) Combining genetic and ecological data to assess the conservation status of the endangered Ethiopian walia ibex. Anim Conserv 12:89–100. https://doi.org/10.1111/j.1469-1795.2009.00238.x
Gray TNE, Vidya TNC, Potdar S et al (2014) Population size estimation of an Asian elephant population in eastern Cambodia through non-invasive mark-recapture sampling. Conserv Genet 15:803–810. https://doi.org/10.1007/s10592-014-0579-y
Hammer SE, Schwammer HM, Suchentrunk F (2008) Evidence for introgressive hybridization of captive markhor (Capra falconeri) with domestic goat: cautions for reintroduction. Biochem Genet 46:216–226. https://doi.org/10.1007/s10528-008-9145-y
Hassanin A, Ropiquet A, Couloux A, Cruaud C (2009) Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae). J Mol Evol 68:293–310. https://doi.org/10.1007/s00239-009-9208-7
Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x
Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129
Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. https://doi.org/10.1093/bioinformatics/btr521
Joshi BD, Matura R, Predit MA et al (2018) Palghat gap reveals presence of two diverged populations of Nilgiri tahr (Nilgiritragus hylocrius) in Western Ghats, India. Mitochondrial DNA Part B 3:245–249. https://doi.org/10.1080/23802359.2018.1436990
Kopelman NM, Mayzel J, Jakobsson M et al (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191. https://doi.org/10.1111/1755-0998.12387
Lacy RC (2000) Structure of the VORTEX simulation model for population viability analysis. Ecol Bull 48:191–203
Lampa S, Mihoub JB, Gruber B et al (2015) Non-invasive genetic mark-recapture as a means to study population sizes and marking behaviour of the elusive Eurasian otter (Lutra lutra). PLoS ONE 10:1–20. https://doi.org/10.1371/journal.pone.0125684
Landguth EL, Cushman SA, Schwartz MK et al (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191. https://doi.org/10.1111/j.1365-294X.2010.04808.x
Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. https://doi.org/10.1111/2041-210X.12410
McRae BH, Kavanagh DM (2011) Linkage mapper connectivity analysis software. The Nature Conservancy, Seattle
Mcrae BH, Dickson BG, Keitt TH et al (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724
McRae BH, Shah VB, Mohapatra TK (2013a) Circuitscape 4 user guide. The Nature Conservancy, Seattle
McRae BH, Shirk A, Platt J (2013b) Gnarly landscape utilities: resistance and habitat calculator user guide. The Nature Conservancy, Fort Collins
Miquel C, Bellemain E, Poillot C et al (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988. https://doi.org/10.1111/j.1471-8286.2006.01413.x
Nazareno AG, Bemmels JB, Dick CW, Lohmann LG (2017) Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour 17:1136–1147. https://doi.org/10.1111/1755-0998.12654
Noss R (2004) Can urban areas have ecological integrity. In: Shaw W, Harris L, VanDruff L (eds) Proceedings, 4th Int Wildl Symp, pp 3–8
Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460
Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell 133:225–245. https://doi.org/10.1016/S0304-3800(00)00322-7
Peterson BK, Weber JN, Kay EH et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135. https://doi.org/10.1371/journal.pone.0037135
Piggott MP, Taylor AC (2003) Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl Res 30:1. https://doi.org/10.1071/wr02077
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.x
Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795
Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249
Reed DH, Frankham R (2003) Society for conservation biology correlation between fitness and genetic diversity. Conserv Biol 17:230–237
Ropiquet A, Hassanin A (2005) Molecular evidence for the polyphyly of the genus Hemitragus (Mammalia, Bovidae). Mol Phylogenet Evol 36:154–168. https://doi.org/10.1016/j.ympev.2005.01.002
Ross S, Al Jahdhami MH, Al Rawahi H (2017) Refining conservation strategies using distribution modelling: a case study of the endangered Arabian tahr Arabitragus jayakari. Oryx 53:532–541. https://doi.org/10.1017/s0030605317000795
Ross S, Al-Rawahi H, Al-Jahdhami MH, et al (2019) Arabitragus jayakari. In: The IUCN Red List of Threatened Species 2019: e.T9918A128770408. https://doi.org/10.2305/IUCN.UK.2019-1.RLTS.T9918A128770408.en. Accessed 1 Jul 2019
Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770
Senn H, Ogden R, Frosch C et al (2014) Nuclear and mitochondrial genetic structure in the Eurasian beaver (Castor fiber)—implications for future reintroductions. Evol Appl 7:645–662. https://doi.org/10.1111/eva.12162
Soorae PS (2018) Global reintroduction perspectives: 2018. Case studies from around the globe. IUCN, International Union for Conservation of Nature, Gland, Switzerland : IUCN SSC Reintroduction Specialist Group and Abu Dhabi, AE : Environment Agency-Abu Dhabi
Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling look before you leap. Trends Ecol Evol 14:323–327
Van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
Verma SK, Singh L (2003) Novel universal primers establish identity of an enormous number of animal species for forensic application. Mol Ecol Notes 3:28–31. https://doi.org/10.1046/j.1471-8286.2003.00340.x
Werhahn G, Senn H, Kaden J et al (2017) Phylogenetic evidence for the ancient himalayan wolf: towards a clarification of its taxonomic status based on genetic sampling from Western Nepal. R Soc Open Sci. https://doi.org/10.1098/rsos.170186