First efficient CRISPR-Cas9-mediated genome editing inLeishmaniaparasites

Cellular Microbiology - Tập 17 Số 10 - Trang 1405-1412 - 2015
Lauriane Sollelis1,2, Mehdi Ghorbal1,2, Cameron Ross MacPherson3, Rafael M. Martins3, Nada Kuk2, Lucien Crobu1, Patrick Bastien4,4,2, Artur Scherf3, Jose‐Juan Lopez‐Rubio1,2, Yvon Sterkers4,4,2
1CNRS - 5290; IRD 224 - University of Montpellier (UMR ‘MiVEGEC’); Paris France
2University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Paris, France
3Institut Pasteur - INSERM U1201 - CNRS ERL9195; “Biology of Host-Parasite Interactions” Unit; Paris France
4CHRU (Centre Hospitalier Universitaire de Montpellier), Department of Parasitology-Mycology, Montpellier, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Boer, 2011, Leishmaniasis impact and treatment access, Clin Microbiol Infect, 17, 1471, 10.1111/j.1469-0691.2011.03635.x

Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143

Dubessay, 2002, The switch region on Leishmania major chromosome 1 is not required for mitotic stability or gene expression, but appears to be essential, Nucleic Acids Res, 30, 3692, 10.1093/nar/gkf510

Dubessay, 2004, Chromosome fragmentation in leishmania, Methods Mol Biol, 270, 353

Dubessay, 2006, Cell cycle-dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major Kin-13 kinesin, Mol Microbiol, 59, 1162, 10.1111/j.1365-2958.2005.05013.x

Gaj, 2013, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol, 31, 397, 10.1016/j.tibtech.2013.04.004

Ghorbal, 2014, Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system, Nat Biotechnol, 32, 819, 10.1038/nbt.2925

Gilles, 2014, Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution, Evodevo, 5, 43, 10.1186/2041-9139-5-43

Hsu, 2013, DNA targeting specificity of RNA-guided Cas9 nucleases, Nat Biotechnol, 31, 827, 10.1038/nbt.2647

Ismach, 1989, Flagellar membrane and paraxial rod proteins of Leishmania: characterization employing monoclonal antibodies, J Protozool, 36, 617, 10.1111/j.1550-7408.1989.tb01105.x

Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829

Lachaud, 2014, Constitutive mosaic aneuploidy is a unique genetic feature widespread in the Leishmania genus, Microbes Infect, 16, 61, 10.1016/j.micinf.2013.09.005

Lye, 2010, Retention and loss of RNA interference pathways in trypanosomatid protozoans, PLoS Pathog, 6, e1001161, 10.1371/journal.ppat.1001161

MacPherson, 2015, Protospacer Workbench: flexible guide-RNA design for CRISPR applications, Nat Biotechnol, 10.1038/nbt.3291

Maga, 1999, Unravelling the kinetoplastid paraflagellar rod, Trends Cell Biol, 9, 409, 10.1016/S0962-8924(99)01635-9

Nakaar, 1994, Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes, Mol Cell Biol, 14, 6736, 10.1128/MCB.14.10.6736

Passos-Silva, 2010, Overview of DNA repair in Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major, J Nucleic Acids, 2010, 840768, 10.4061/2010/840768

Peng, 2015, CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi, MBio, 6, e02097-14, 10.1128/mBio.02097-14

Santrich, 1997, A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts, Mol Biochem Parasitol, 90, 95, 10.1016/S0166-6851(97)00149-7

Shen, 2014, Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9, MBio, 5, e01114, 10.1128/mBio.01114-14

Sterkers, 2011, FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major, Cell Microbiol, 13, 274, 10.1111/j.1462-5822.2010.01534.x

Wagner, 2014, Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum, Nat Methods, 11, 915, 10.1038/nmeth.3063