First Principles Calculations of Electric Field Effect on the (6,0) Zigzag Single-Walled Silicon Carbide Nanotube for use in Nano-Electronic Circuits

Journal of Cluster Science - Tập 24 - Trang 591-604 - 2012
Ali Ahmadi Peyghan1, Mohammad T. Baei2, Saeedeh Hashemian3, Parviz Torabi4
1Young Researchers Club, Islamshahr Branch, Islamic Azad University, Tehran, Iran
2Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
3Department of Chemistry, Yazd-Branch, Islamic Azad University, Yazd, Iran
4Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

Tóm tắt

Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled silicon carbide nanotube (SiCNT) was studied under the parallel and transverse electric fields with strengths 0–140 × 10−4 a.u. by using density functional calculations. Analysis of the structural parameters indicates that resistance of the nanotube against the applied parallel electric field is more than resistance of the nanotube against the applied transverse electric field. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag SiCNT show increases with any increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not change significantly with any increasing in the electric field strength. The energy gap of the nanotube increases with any increases in the electric field strength and its reactivity is decreased. Increase of the ionization potential, electron affinity, chemical potential, and HOMO and LOMO in the nanotube with increase of the applied external electric field strengths indicates that the properties of SiCNTs can be controlled by the proper external electric field for use in nano-electronic circuits.

Tài liệu tham khảo

S. Ijima (1991). Nature 354, 56–58. V. Derycke, R. Martel, J. Appenzeller, and Ph Avouris (2002). Appl. Phys. Lett. 80, 2773–2775. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus (1999). Science 286, 1127–1129. B. Zurek and J. Autschbach (2004). J. Am. Chem. Soc. 126, 13079. A. Nojeh, G. W. Lakatos, S. Peng, K. Cho, and R. F. W. Pease (2003). Nano Lett. 3, 1187–1190. V. Linssa, T. Halma, W. Hoyera, F. Richtera, and N. Schellb (2003). Vacuum 70, 1–9. X.-H. Sun, C.-P. Li, W.-K. Wong, N.-B. Wong, C.-S. Lee, S.-T. Lee, and B.-T. Teo (2002). J. Am. Chem. Soc. 124, 14464. K. M. Alam and A. K. Ray (2009). J Nanopart .Res. 11, 1405–1420. A. Wu, Q. Song, L. Yang, and Q. Hao (2011). Comput. Theor. Chem. 977, 92–96. K. M. Alam and A. K. Ray (2007). Nanotechnology 18, 495706. M. Zhao, Y. Xia, R. Q. Zhang, and S. T. Lee (2005). J .Chem. Phys. 122, 214707. Y. Miyamoto and B. D. Yu (2002). Appl. Phys. Lett. 80, 586–588. K. H. Khoo, M. S. C. Mazzoni, and S. G. Louie (2004). Phys. Rev. B 69, 201401(R). G. Y. Guo, S. Ishibashi, T. Tamura, and K. Terakura (2007). Phys. Rev. B 75, 245403. C. Attaccalite, L. Wirtz, A. Marini, and A. Rubio (2007). Phys. Status Solid. B 244, 4288–4292. M. T. Baei, A. Ahmadi Peyghan, and M. Moghimi (2012). J .Mol. Model. 18, 4477–4489. P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Chem. Rev. 106, 2065–2091. K. K. Hazarika, N. C. Baruah, and R. C. Deka (2009). Struct. Chem. 20, 1079. R. G. Parr, L. Szentpaly, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922–1924. H. Sabzyan and D. Farmanzadeh (2007). J. Comput. Chem. 28, 923–931. M. Schmidt, et al. (1993). J. Comput. Chem. 14, 1347–1363. P. Politzer, P. Lane, J. S. Murray, and M. C. Concha (2005). J. Mol. Model. 11(1), 1. Z. Peralta-Inga, P. Lane, J. S. Murray, S. Boyd, M. E. Grice, C. J. O’Connor, and P. Politzer (2003). Nano Lett. 3(1), 21–28.