First Principle Calculation of NbC Precipitation Competition between TiC Particle and Ferrite Matrix
Tóm tắt
The electronic structure, cohesive energy and interfacial energy of ferrite (100)/NbC (100) and TiC (100)/NbC (100) interfaces have been investigated by the first-principles calculation. Moreover, the heterogeneous nuclei mechanism of NbC particle was also analyzed. The results showed that the stacking sequences have a great influence on the cohesive energy and equilibrium interfacial separation of the above-mentioned interfaces. Compared with C-terminated interfaces, the cohesive energy of Nb-terminated ones is lower while the equilibrium interface distance is larger. Among the two C-terminated interface structures, the interfacial energy between the NbC and ferrite is 4.54 J/m2, which is larger than that of NbC/TiC interface (1.80 J/m2). Therefore, NbC particles prefer heterogeneous nucleation on TiC particles surface rather than the ferrite matrix, which agrees well with the experimental result.
Tài liệu tham khảo
Johansson L I. Electronic and Structural Properties of Transition-metal Carbide and Nitride Surfaces[J]. Surf. Sci. Rep., 1995, 21(5-6): 177–250
Arya A, Carter E A. Structure, Bonding, and Adhesion at the TiC(100)/Fe(110) Interface from First Principles[J]. J. Chem. Phys., 2003, 118(19): 8982–8996
Liu Y, Jiang Y, Zhou R, et al. First Principles Study the Stability and Mechanical Properties of MC (M= Ti, V, Zr, Nb, Hf and Ta) Compounds[J]. J. Alloys Compd., 2014, 582(5): 500–504
Wu L, Wang Y, Yan Z, et al. The Phase Stability and Mechanical Properties of Nb–C System: Using First-principles Calculations and Nano-indentation[J]. J. Alloys Compd., 2013, 561(5): 220–227
Liu H, Sun F E, Sun H E, et al. Analysis of Microstructure and Mechanical Properties of Ultrafine Grained Low Carbon Steel[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(5): 1099–1104
Nayak S, Misra R, Hartmann J, et al. Microstructure and Properties of Low Manganese and Niobium Containing HIC Pipeline Steel[J]. Mater. Sci. Eng. A, 2008, 494(1): 456–463
Hong S G, Kang K B, Park C G. Strain-induced Precipitation of NbC in Nb and Nb-Ti Microalloyed HSLA Steels[J]. Scripta Mater., 2002, 46(2): 163–168
Rainforth W M, Black M P, Higginson R L, et al. Precipitation of NbC in a Model Austenitic Steel[J]. Acta Mater., 2002, 50(4): 735–747
Hin C, Bréchet Y, Maugis P, et al. Kinetics of Heterogeneous Grain Boundary Precipitation of NbC in a-iron: A Monte Carlo Study[J]. Acta Mater., 2008, 56(19): 5653–5667
Liu L M, Wang S Q, Ye H Q. Adhesion and Bonding of the Al/TiC Interface[J]. Surf. Sci., 2004, 550(1-3): 46–56
Liu L M, Wang S Q, Ye H Q. First-principles Study of Polar Al/TiN(111) Interfaces[J]. Acta Mater., 2004, 52(12): 3681–3688
Wang H L, Tang J J, Zhao Y J, et al. First-principles Study of Mg/Al2MgC2 Heterogeneous Nucleation Interfaces[J]. Appl. Surf. Sci., 2015, 355(15): 1091–1097
Yang J, Zhang P, Zhou Y, et al. First-principles Study on Ferrite/TiC Heterogeneous Nucleation Interface[J]. J. Alloys Compd., 2013, 556(15): 160–166
Wang J, Yang J, Wang C, et al. First-principles Calculation on LaAlO3 as the Heterogeneous Nucleus of TiC[J]. Comp. Mater. Sci., 2015, 101(15): 108–114
Liu W, Liu X, Zheng W T, et al. Surface Energies of Several Ceramics with NaCl Structure[J]. Surf. Sci., 2006, 600(2): 257–264
Clark S J, Segall M D, Pickard C J, et al. First Principles Methods Using Castep[J]. Zeitschrift für Kristallographie-Cryst. Mater., 2005, 220(5-6): 567–570
Segall M D, Philip J D L, Probert M J, et al. First-principles Simulation: Ideas, Illustrations and the Castep Code[J]. J. Phys.: Condens. Matter., 2002, 14(11): 2717–2728
Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41(11): 7892–7895
White J A, Bird D M. Implementation of Gradient-corrected Exchange-correlation Potentials in Car-parrinello Total-energy Calculations[J]. Phys. Rev. B, 1994, 50(7): 4954–4957
Fischer T H, Almlof J. General Methods for Geometry and Wave Function Optimization[J]. J.Phys. Chem., 1992, 96(24): 9768–9774
Li H, Zhang L, Zeng Q, et al. Structural, Elastic and Electronic Properties of Transition Metal Carbides TMC (TM=Ti, Zr, Hf and Ta) from First-principles Calculations[J]. Solid State Commun., 2011, 151(8): 602–606
Jiao Z Y, Ma S H, Zhang X Z, et al. Pressure-induced Effects on Elastic and Mechanical Properties of TiC and TiN: A DFT Study[J]. EPL-Europhysics Lett., 2013, 101(4): 46002–46006
Chang R, Graham L J. Low-temperature Elastic Properties of ZrC and TiC[J]. J. Appl. Phys., 1966, 37(10): 3778–3783
Gao X P, Jiang Y H, Liu Y Z, et al. Stability and Elastic Properties of NbxCy Compounds[J]. Chin. Phys. B, 2014, 23(9): 466–473
Rudy E, Windisch S, Brukl C E. Revision of the Vanadium-Carbon and Niobium-Carbon Systems[J]. Planseeber. Pulvermet., 1968, 16(1): 3–33
Dang D Y, Shi L Y, Fan J L, et al. First-principles Study of W-TiC Interface Cohesion[J]. Surf. Coat. Technol., 2015, 276: 602–605