First Principle Calculation of NbC Precipitation Competition between TiC Particle and Ferrite Matrix

Huihui Xiong1,2, Henghua Zhang1, Huining Zhang2, Lei Gan2
1State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, China
2School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, China

Tóm tắt

The electronic structure, cohesive energy and interfacial energy of ferrite (100)/NbC (100) and TiC (100)/NbC (100) interfaces have been investigated by the first-principles calculation. Moreover, the heterogeneous nuclei mechanism of NbC particle was also analyzed. The results showed that the stacking sequences have a great influence on the cohesive energy and equilibrium interfacial separation of the above-mentioned interfaces. Compared with C-terminated interfaces, the cohesive energy of Nb-terminated ones is lower while the equilibrium interface distance is larger. Among the two C-terminated interface structures, the interfacial energy between the NbC and ferrite is 4.54 J/m2, which is larger than that of NbC/TiC interface (1.80 J/m2). Therefore, NbC particles prefer heterogeneous nucleation on TiC particles surface rather than the ferrite matrix, which agrees well with the experimental result.

Tài liệu tham khảo

Johansson L I. Electronic and Structural Properties of Transition-metal Carbide and Nitride Surfaces[J]. Surf. Sci. Rep., 1995, 21(5-6): 177–250 Arya A, Carter E A. Structure, Bonding, and Adhesion at the TiC(100)/Fe(110) Interface from First Principles[J]. J. Chem. Phys., 2003, 118(19): 8982–8996 Liu Y, Jiang Y, Zhou R, et al. First Principles Study the Stability and Mechanical Properties of MC (M= Ti, V, Zr, Nb, Hf and Ta) Compounds[J]. J. Alloys Compd., 2014, 582(5): 500–504 Wu L, Wang Y, Yan Z, et al. The Phase Stability and Mechanical Properties of Nb–C System: Using First-principles Calculations and Nano-indentation[J]. J. Alloys Compd., 2013, 561(5): 220–227 Liu H, Sun F E, Sun H E, et al. Analysis of Microstructure and Mechanical Properties of Ultrafine Grained Low Carbon Steel[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(5): 1099–1104 Nayak S, Misra R, Hartmann J, et al. Microstructure and Properties of Low Manganese and Niobium Containing HIC Pipeline Steel[J]. Mater. Sci. Eng. A, 2008, 494(1): 456–463 Hong S G, Kang K B, Park C G. Strain-induced Precipitation of NbC in Nb and Nb-Ti Microalloyed HSLA Steels[J]. Scripta Mater., 2002, 46(2): 163–168 Rainforth W M, Black M P, Higginson R L, et al. Precipitation of NbC in a Model Austenitic Steel[J]. Acta Mater., 2002, 50(4): 735–747 Hin C, Bréchet Y, Maugis P, et al. Kinetics of Heterogeneous Grain Boundary Precipitation of NbC in a-iron: A Monte Carlo Study[J]. Acta Mater., 2008, 56(19): 5653–5667 Liu L M, Wang S Q, Ye H Q. Adhesion and Bonding of the Al/TiC Interface[J]. Surf. Sci., 2004, 550(1-3): 46–56 Liu L M, Wang S Q, Ye H Q. First-principles Study of Polar Al/TiN(111) Interfaces[J]. Acta Mater., 2004, 52(12): 3681–3688 Wang H L, Tang J J, Zhao Y J, et al. First-principles Study of Mg/Al2MgC2 Heterogeneous Nucleation Interfaces[J]. Appl. Surf. Sci., 2015, 355(15): 1091–1097 Yang J, Zhang P, Zhou Y, et al. First-principles Study on Ferrite/TiC Heterogeneous Nucleation Interface[J]. J. Alloys Compd., 2013, 556(15): 160–166 Wang J, Yang J, Wang C, et al. First-principles Calculation on LaAlO3 as the Heterogeneous Nucleus of TiC[J]. Comp. Mater. Sci., 2015, 101(15): 108–114 Liu W, Liu X, Zheng W T, et al. Surface Energies of Several Ceramics with NaCl Structure[J]. Surf. Sci., 2006, 600(2): 257–264 Clark S J, Segall M D, Pickard C J, et al. First Principles Methods Using Castep[J]. Zeitschrift für Kristallographie-Cryst. Mater., 2005, 220(5-6): 567–570 Segall M D, Philip J D L, Probert M J, et al. First-principles Simulation: Ideas, Illustrations and the Castep Code[J]. J. Phys.: Condens. Matter., 2002, 14(11): 2717–2728 Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41(11): 7892–7895 White J A, Bird D M. Implementation of Gradient-corrected Exchange-correlation Potentials in Car-parrinello Total-energy Calculations[J]. Phys. Rev. B, 1994, 50(7): 4954–4957 Fischer T H, Almlof J. General Methods for Geometry and Wave Function Optimization[J]. J.Phys. Chem., 1992, 96(24): 9768–9774 Li H, Zhang L, Zeng Q, et al. Structural, Elastic and Electronic Properties of Transition Metal Carbides TMC (TM=Ti, Zr, Hf and Ta) from First-principles Calculations[J]. Solid State Commun., 2011, 151(8): 602–606 Jiao Z Y, Ma S H, Zhang X Z, et al. Pressure-induced Effects on Elastic and Mechanical Properties of TiC and TiN: A DFT Study[J]. EPL-Europhysics Lett., 2013, 101(4): 46002–46006 Chang R, Graham L J. Low-temperature Elastic Properties of ZrC and TiC[J]. J. Appl. Phys., 1966, 37(10): 3778–3783 Gao X P, Jiang Y H, Liu Y Z, et al. Stability and Elastic Properties of NbxCy Compounds[J]. Chin. Phys. B, 2014, 23(9): 466–473 Rudy E, Windisch S, Brukl C E. Revision of the Vanadium-Carbon and Niobium-Carbon Systems[J]. Planseeber. Pulvermet., 1968, 16(1): 3–33 Dang D Y, Shi L Y, Fan J L, et al. First-principles Study of W-TiC Interface Cohesion[J]. Surf. Coat. Technol., 2015, 276: 602–605