Fires Following Bark Beetles: Factors Controlling Severity and Disturbance Interactions in Ponderosa Pine
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agne, M.C., T. Woolley, and S. Fitzgerald. 2016. Fire severity and cumulative disturbance effects in the post-mountain pine beetle lodgepole pine forests of the Pole Creek Fire. Forest Ecology and Management 366: 73–86. doi: 10.1016/j.foreco.2016.02.004
Andrews, P.L. 2009. BehavePlus fire modeling system, version 5.0: design and features. USDA Forest Service General Technical Report RMRS-GTR-213WWW, Rocky Mountain Research Station, Fort Collins, Colorado, USA.
Andrus, R.A., T.T. Veblen, B.J. Harvey, and S.J. Hart. 2016. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado. Ecological Applications 26: 700–711. doi: 10.1890/15-1121
Bechtold, W.A. 2004. Largest-crown-width prediction models for 53 species in the western United States. Western Journal of Applied Forestry 19: 245–251.
Bentz, B., editor. 2009. Bark beetle outbreaks in western North America: causes and consequences. University of Utah Press, Salt Lake City, USA.
Bond, M.L., D.E. Lee, C.M. Bradley, and C.T. Hanson. 2009. Influence of pre-fire tree mortality on fire severity in conifer forests of the San Bernardino Mountains, California. The Open Science Journal 2: 41–47. doi: 10.2174/1874398600902010041
Bossert, J.E., R.R. Linn, J.M. Reisner, J.L. Winterkamp, P. Dennison, and D. Roberts. 2000. Coupled atmosphere-fire behavior model sensitivity to spatial fuels characterization. Pages 21–26 in: Third symposium on fire and forest meteorology, 9–14 January 2000, Long Beach, California—preprint volume. American Meteorology Society, Boston, Massachusetts, USA.
Bradley, M. 2002. This model can take the heat. Science and Technology Review. <http://www.llnl.gov/str/November02/Bradley.html>. Accessed 19 June 2015.
Breshears, D.D., O.B. Myers, C.W. Meyer, F.J. Barnes, C.B. Zou, C.D. Allen, N.G. McDowell, and W.T. Pockman. 2009. Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and Environment 7(4): 185–189. doi: 10.1890/080016
Buma, B. 2015. Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere 6: 70. doi: 10.1890/ES15-00058.1
Cassagne, N., F. Pimont, J.-L. Dupuy, R.R. Linn, A. Marrel, C. Olivieri, and R. Rigolot. 2011. Using a fire propagation model to assess the efficiency of prescribed burning in reducing the fire hazard. Ecological Modelling 222: 1502–1514.
Coppoletta, M., K.E. Merriam, B.M. Collins. 2015. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecological Applications 26: 686–699. doi: 10.1890/15-0225
Darling, E.S., and I.M. Côté. 2008. Quantifying the evidence for ecological synergies. Ecology Letters 11: 1278–1286. doi: 10.1111/j.1461-0248.2008.01243.x
DeRose, R.J., and J.N. Long. 2009. Wildfire and spruce beetle outbreak: simulation of interacting disturbances in the central Rocky Mountains. Ecoscience 16: 28–38. doi: 10.2980/16-13160
Donato, D.C., B.J. Harvey, W.H. Romme, M. Simard, and M.G. Turner. 2013. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone. Ecological Applications 23: 3–20. doi: 10.1890/12-0772.1
Dunn, O.J. 1961. Multiple comparisons among means. Journal of the American Statistical Association 56(293): 52–64. doi: 10.1080/01621459.1961.10482090
Dupuy. J.-L., R.R. Linn, V. Konovalov, F. Pimont, J.A. Vega, and E. Jimenez. 2011. Exploring coupled fire/atmosphere interactions downwind of wind-driven surface fires and their influence on backfiring using the HIGRAD-FIRETEC model. International Journal of Wildland Fire 20: 734–750. doi: 10.1071/WF10035
Dupuy, J.-L., F.F. Pimont, and R.R. Linn. 2014. FIRETEC evaluation against the FireFlux experiment: preliminary results. Pages 261–274 in: D.X. Viegas, editor. Advances in forest fire research. Chapter 1—fire behaviour and modelling. Coimbra University Press, Portugal. doi: 10.14195/978-989-26-0884-6_28
Fettig, C.J., K.E. Gibson, A.S. Munson, and J.F. Negrón. 2014. Cultural practices for prevention and mitigation of mountain pine beetle infestations. Forest Science 60(3): 450–463.
Foster, C.N., C.F. Sato, D.B. Lindenmayer, and P.S. Barton. 2016. Integrating theory into disturbance interaction experiments to better inform ecosystem management. Global Change Biology 22: 1325–1335. doi: 10.1111/gcb.13155
Giunta, A.D., M.J. Jenkins, E.G. Hebertson, and A.S. Munson. 2016. Disturbance agents and their associated effects on the health of interior Douglas-fir forests in the central Rocky Mountains. Forests 7(4), 80. doi: 10.3390/f7040080
Gunderson, L.H. 2000. Ecological resilience—in theory and application. Annual Review of Ecology and Systematics 31: 425–439. doi: 10.1146/annurev.ecolsys.31.1.425
Hart, S.J., T. Schoennagel, T.T. Veblen, and T.B. Chapman. 2015. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks. Proceedings of the National Academy of Sciences of the USA 112: 4375–4380. doi: 10.1073/pnas.1424037112
Harvey, B.J., D.C. Donato, W.H. Romme, and M.G. Turner. 2013. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. Ecology 94: 2475–2486. doi: 10.1890/13-0188.1
Harvey, B.J., D.C. Donato, and M.G. Turner. 2014a. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US northern Rockies. Proceedings of the National Academy of Sciences of the USA 111: 15120–15125. doi: 10.1073/pnas.1411346111
Harvey, B.J., D.C. Donato, and M.G. Turner. 2014b. Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak phase and burning conditions. Ecological Applications 24: 1608–1625. doi: 10.1890/13-1851.1
Hicke, J.A., M.C. Johnson, J.L. Hayes, and H.K. Preisler. 2012. Review: effects of bark beetle-caused mortality on wildfire. Forest Ecology and Management 271: 81–90. doi: 10.1016/j.foreco.2012.02.005
Hicke, J.A., A.J.H. Meddens, and C.A. Kolden. 2016. Recent tree mortality in the western United States from bark beetles and forest fires. Forest Science 62: 141–153. doi: 10.5849/forsci.15-086
Hoffman, C.M. 2011. Numerical simulation of crown fire hazard in bark beetle infested lodge-pole pine forests. Dissertation, University of Idaho. Moscow, USA.
Hoffman, C.M., C.H. Sieg, J.D. McMillin, and P.Z. Fulé. 2012a. Fuel loadings 5 years after a bark beetle outbreak in southwestern USA ponderosa pine forests. International Journal of Wildland Fire 21: 306–312. doi: 10.1071/WF11019
Hoffman, C.M., P. Morgan, W. Mell, R. Parsons, E.K. Strand, and S. Cook. 2012b. Numerical simulation of crown fire hazard immediately after bark beetle-caused mortality in lodgepole pine forests. Forest Science 58: 178–188. doi: 10.5849/forsci.10-137
Hoffman, C.M., R. Parsons, R. Linn, C. Sieg, and J. Winterkamp. 2015. Modeling interactions of beetle attacks and fire behavior over time in lodgepole pine stands using FIRETEC. Agricultural and Forest Meteorology 204: 79–93. doi: 10.1016/j.agrformet.2015.01.018
Hoffman, C.M., J. Canfield, R.R. Linn, W. Mell, C.H. Sieg, F. Pimont, and J. Ziegler. 2016. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technology 52: 221–237. doi: 10.1007/s10694-015-0500-3
Jenkins, M.J., E. Hebertson, W.G. Page, and C.A. Jorgensen. 2008. Bark beetles, fuels, fires and implications for forest management in the Intermountain West. Forest Ecology and Management 254: 16–34. doi: 10.1016/j.foreco.2007.09.045
Jenkins, M.J., W.G. Page, E.G. Hebertson, and M.E. Alexander. 2012. Fuels and fire behavior dynamics in bark beetle-attacked forests in western North America and implications for fire management. Forest Ecology and Management 275: 23–34. doi: 10.1016/j.foreco.2012.02.036
Jenkins, M.J., J.B. Runyon, C.J. Fettig, W.G. Page, and B.J. Bentz. 2014. Interactions among the mountain pine beetle, fires, and fuels. Forest Science 60: 489–501. doi: 10.5849/forsci.13-017
Jolly, W.M., R.A. Parsons, A.M. Hadlow, G.M. Cohn, S.S. McAlister, J.B. Popp, R.M. Hubbard, and J.F. Negrón. 2012. Relationships between moisture, chemistry, and ignition of Pinus contorta needles during the early phases of mountain pine beetle attack. Forest Ecology and Management 269: 52–59. doi: 10.1016/j.foreco.2011.12.022
Lahiri, S.N. 2003. Resampling methods for dependent data. Springer Series in statistics. Springer-Verlag, New York, New York, USA. doi: 10.1007/978-1-4757-3803-2
Linn, R.R. 1997. A transport model for prediction of wildfire behavior. Dissertation, New Mexico State University, Las Cruces, USA.
Linn, R.R., J. Reisner, J.J. Colman, and J. Winterkamp. 2002. Studying wildfire behavior using FIRETEC. International Journal of Wildland Fire 11: 233–246. doi: 10.1071/WF02007
Linn, R.R., J. Winterkamp, J. Colman, and C. Edminster. 2005. Modeling interactions between fire and atmosphere in discrete element fuel beds. International Journal of Wildland Fire 14: 37–48. doi: 10.1071/WF04043
Linn, R.R., and P. Cunningham. 2005. Numerical simulations of grass fires using a coupled atmosphere-fire model: basic fire behavior and dependence on wind speed. Journal of Geophysical Research 110: D13107. doi: 10.1029/2004JD005597
Linn, R.R, K. Anderson, J. Winterkamp, A. Brooks, M. Wotton, J.-L. Dupuy, F. Pimont, and C. Edminster. 2012. Incorporating field wind data into FIRETEC simulations of the International Crown Fire Modeling Experiment (ICFME): preliminary lessons learned. Canadian Journal of Forest Research 42(5): 879–898. doi: 10.1139/x2012-038
Linn, R.R., C.H. Sieg, C. M. Hoffman, J. Winterkamp, and J.D. McMillin. 2013. Modeling wind fields and fire propagation following bark beetle outbreaks in spatially-heterogeneous pinyon-juniper woodland fuel complexes. Agriculture and Forest Meteorology 173: 139–153. doi: 10.1016/j.agrformet.2012.11.007
Marino, E., J.-L. Dupuy, F. Pimont, M. Guijarro, C. Hernando, and R.R. Linn. 2012. Fuel bulk density and fuel moisture content effect on fire rate of spread: a comparison between FIRETEC model predictions and experimental results in shrub fuels. Journal of Fire Sciences 30(4): 277–299. doi: 10.1177/0734904111434286
Meigs, G.W., H.S.J. Zald, J.L. Campbel, W.S. Keeton, and R.E. Kennedy. 2016. Do insect outbreaks reduce the severity of subsequent forest fires? Environmental Research Letters 11: 045008. doi: 10.1088/1748-9326/11/4/045008
Metz, M.R., J.M. Varner, K.M. Frangioso, R.K. Meentemeyer, and D.M. Rizzo. 2013. Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease. Ecology 94: 2152–2159. doi: 10.1890/13-0915.1
Negrón, J.F., J.D. McMillin, J.A. Anhold, and D. Coulson. 2009. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. Forest Ecology and Management 257: 1353–1362. doi: 10.1016/j.foreco.2008.12.002
Page, W.G., and M.J. Jenkins. 2007. Predicted fire behavior in selected mountain pine beetle-infested lodgepole pine. Forest Science 53: 662–674.
Page, W.G., M.J. Jenkins, and J.B. Runyon. 2012. Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage. Canadian Journal Forest Research 42: 1631–1647. doi: 10.1139/x2012-094
Page, W.G., M.J. Jenkins, and M.E. Alexander. 2014. Crown potential in lodgepole pine forests during the red phase of mountain pine beetle attack. Forestry 87: 347–361. doi: 10.1093/forestry/cpu003
Parker, T.J., K.M. Clancy, R.L. Mathiasen. 2006. Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agricultural and Forest Entomology 8: 167–189. doi: 10.1111/j.1461-9563.2006.00305.x
Pimont F., J.-L. Dupuy, R.R. Linn, and S. Dupont. 2009. Validation of FIRETEC wind-flows over a canopy and a fuel-break. International Journal of Wildland Fire 18: 775–790. doi: 10.1071/WF07130
Pimont, F., J.-L. Dupuy, R.R. Linn, and S. Dupont. 2011. Impact of tree canopy structure on wind-flows and fire propagation simulated with FIRETEC. Annals Forest Science 68(3): 523–530. doi: 10.1007/s13595-011-0061-7
Pimont, F., J.-L. Dupuy, and R.R. Linn. 2014. Fire effects on the physical environment in the WUI using FIRETEC. Pages 749–757 in: D.X. Viegas, editor. Advances in forest fire research. Chapter 3—fire management. Coimbra University Press, Portugal. doi: 10.14195/978-989-26-0884-6_83
Prichard, S.J., and M.C. Kennedy. 2014. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event. Ecological Applications 24(3): 571–590. doi: 10.1890/13-0343.1
R Development Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ripley, B.D. 1977. Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological) 39(2): 172–212.
Rothermel, R.W. 1983. How to predict fire spread and intensity of forest and range fire. USDA Forest Service Station General Technical Report INT-143, Intermountain Forest and Range Experiment, Ogden, Utah, USA.
Sabo, K.E., C.H. Sieg, S.C. Hart, and J.D. Bailey. 2009. The role of disturbance severity and canopy closure on standing crop of understory plant species in ponderosa pine stands in northern Arizona, USA. Forest Ecology and Management 257: 1656–1662. doi: 10.1016/j.foreco.2009.01.006
Savage, M., J.N. Mast. 2005. How resilient are Southwestern ponderosa pine forests after crownfire? Canadian Journal of Forest Research 35: 967–977. doi: 10.1139/x05-028
Scott, J.H., and E.D. Reinhardt. 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. USA Forest Service Research Paper RMRS-RP-29, Rocky Mountain Research Station, Fort Collins, Colorado, USA.
Seidl, R., M.-J. Schelhass, W. Rammer, and P.J. Verkerk. 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change 4: 806–810. doi: 10.1038/nclimate2318
Seidl, R., T.A. Spies, D.L. Peterson, S.L. Stephens, and J.A. Hicke. 2016. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology 53(1): 120–129. doi: 10.1111/1365-2664.12511
Simard, M., W.H. Romme, J.M. Griffin, and M.G. Turner. 2011. Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecological Monographs 81: 3–24. doi: 10.1890/10-1176.1
Stevens-Rumann, C., C.H. Sieg, and M.E. Hunter. 2012. Ten years after wildfires: how does varying tree mortality impact fire hazard and forest resiliency? Forest Ecology and Management 267: 199–208. doi: 10.1016/j.foreco.2011.12.003
Temperli, C., T.T. Veblen, S.J. Hart, D. Kulakowski, and A.J. Tepley. 2015. Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model. Ecosphere 6(11): 231. doi: 10.1890/ES15-00394.1
Turner, M.G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91: 2833–2849. doi: 10.1890/10-0097.1
Turner, M.G., and S.P. Bratton. 1987. Fire, grazing, and the landscape heterogeneity of a Georgia barrier reef island. Pages 85–101 in: M.G. Turner, editor. Landscape heterogeneity and disturbance. Springer-Verlag, New York, New York, USA. doi: 10.1007/978-1-4612-4742-5_5
Turner, M.G., D.C. Donato, and W.H. Romme. 2013. Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landscape Ecology 28: 1081–1097. doi: 10.1007/s10980-012-9741-4
USDA Forest Service. 2004. Forest insect and disease conditions in the Southwestern Region. <https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5238440.pdf>. Accessed 11 January 2017.
Van Wagner, C.E. 1977. Conditions for the start and spread of crown fire. Canadian Journal of Forest Research 7: 23–34. doi: 10.1139/x77-004