Fire severity and fire‐induced landscape heterogeneity affect arboreal mammals in fire‐prone forests

Ecosphere - Tập 6 Số 10 - Trang 1-14 - 2015
Evelyn K. Chia1, Michelle Bassett1, Dale G. Nimmo2,1, Steve Leonard3, Euan G. Ritchie1, Michael F. Clarke3, Andrew F. Bennett4,3,1
1School of Life and Environmental Sciences and Centre for Integrative Ecology, Deakin University, Melbourne, Victoria 3125, Australia
2Present address: Institute for Land, Water and Society, Charles Sturt University, Albury, New South Wales 2640 Australia.
3Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria 3086, Australia
4Arthur Rylah Institute for Environmental Research, Melbourne, Victoria 3084 Australia

Tóm tắt

In fire‐prone regions, wildfire influences spatial and temporal patterns of landscape heterogeneity. The likely impacts of climate change on the frequency and intensity of wildfire highlights the importance of understanding how fire‐induced heterogeneity may affect different components of the biota. Here, we examine the influence of wildfire, as an agent of landscape heterogeneity, on the distribution of arboreal mammals in fire‐prone forests in south‐eastern Australia. First, we used a stratified design to examine the role of topography, and the relative influence of fire severity and fire history, on the occurrence of arboreal mammals 2–3 years after wildfire. Second, we investigated the influence of landscape context on the occurrence of arboreal mammals at severely burnt sites. Forested gullies supported a higher abundance of arboreal mammals than slopes. Fire severity was the strongest influence, with abundance lower at severely burnt than unburnt sites. The occurrence of mammals at severely burned sites was influenced by landscape context: abundance increased with increasing amount of unburnt and understorey‐only burnt forest within a 1 km radius. These results support the hypothesis that unburnt forest and moist gullies can serve as refuges for fauna in the post‐fire environment and assist recolonization of severely burned forest. They highlight the importance of spatial heterogeneity created by wildfire and the need to incorporate spatial aspects of fire regimes (e.g., creation and protection of refuges) for fire management in fire‐prone landscapes.

Từ khóa


Tài liệu tham khảo

Adams M., 2011, Burning issues: sustainability and management of Australia's southern forests, 10.1071/9780643103467

10.1016/j.landurbplan.2013.04.017

10.1111/j.1600-0706.2010.18765.x

10.1371/journal.pone.0022952

Bartoń K.2014.MuMIn: multi-model inference. R package. Version 1.10.5.https://cran.r-project.org/web/packages/MuMIn/

10.1016/j.foreco.2014.12.028

Bates D. M.Maechler B.Bolker andS.Walker.2014.lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7.https://cran.r-project.org/web/packages/lme4/

10.1071/WR9910125

10.1016/j.foreco.2012.04.003

10.1071/AM14027

10.1890/14-1699.1

10.1016/j.tree.2005.04.025

10.1007/s10980-009-9443-8

10.1023/B:BIOC.0000014467.27138.0b

10.1111/j.1365-2699.2004.01195.x

Buckland S. T., 2001, Introduction to distance sampling: estimating abundance of biological populations, 10.1093/oso/9780198506492.001.0001

Burnham K. P., 2002, Model selection and multimodel inference: a practical information-theoretic approach. Second edition

10.1071/WF07149

10.1071/WR00041

10.1016/j.biocon.2012.04.021

10.1071/WF10060

10.1016/j.foreco.2008.12.030

10.2307/1938861

10.1890/1051-0761(2006)016[1706:SHBTBF]2.0.CO;2

10.1071/WR08029

10.1080/00049158.1997.10674696

10.1080/00049158.1975.10675618

10.1111/j.1365-2664.2010.01906.x

10.1071/WR9890449

10.1111/j.1472-4642.2011.00754.x

10.1111/j.1466-8238.2011.00686.x

Lefcheck J. andJ. S.Casallas.2014.R-squared for generalized linear mixed-effects models. R-script code. Version 0.2-4.https://github.com/jslefche/rsquared.glmer

10.1016/j.foreco.2013.11.036

10.1071/WR9900467

10.1016/j.biocon.2013.07.028

10.1016/j.biocon.2011.02.022

10.1890/11-0279.1

10.1071/WR9870263

10.1890/11-1479.1

Mazerolle M. J.2014.AICcmodavg. R package. Version 2.00.https://cran.r-project.org/web/packages/AICcmodavg/

10.1111/j.1523-1739.2004.00492.x

10.1111/j.2041-210x.2012.00261.x

10.1111/ecog.00684

10.1890/1540-9295(2006)4[481:MFFITW]2.0.CO;2

10.1016/0378-1127(95)03598-5

10.1071/WF07151

R Core Team, 2014, R: a language and environment for statistical computing

10.1111/1365-2664.12153

10.1016/j.foreco.2009.03.041

10.1071/WR01047

10.1071/WF07146

Shlisky A., 2007, Fire, ecosystems and people: threats and strategies for global biodiversity conservation

10.1890/04-1353

10.1016/S0006-3207(99)00153-6

Teague B., 2010, 2009 Victorian bushfires royal commission: final report

10.2307/3235886

10.1071/WR98055

10.1002/wrcr.20123

10.1111/j.1469-1795.2012.00542.x

10.1016/j.biocon.2005.09.007

Whelan R. J., 2002, Flammable Australia: the fire regimes and biodiversity of a continent, 94

10.1071/WF09002

10.1007/978-0-387-87458-6