Finsler structures of negative curvature in ⊄-linear fibre spaces
Tóm tắt
Let X be a reduced compact complex space and E→X a ⊄-linear fibre space. Let P(E) be the associated projective variety over X and let L(E) be the canonical line bundle over P(E). Generalizing a result of Kobayashi, we prove that E carries a Finsler metric of negative curvature if and only if L(E)red→P(E)red carries an Hermitian metric of negative curvature.
Tài liệu tham khảo
FISCHER, G.: Lineare Fasserraume und koharente Modulgarben ubder komplexen Raumen. Arch. Math.18, 609–617 (1967)
FISCHER, G.: Complex Analytic Geometry, Lecture Notes in Math., vol. 538, Springer-Verlag, Berlin and New York 1976
GRAUERT, H.: Uber Modifikationen und exceptionelle analytische Mengen. Math. Ann.146, 331–368 (1962)
GRAUERT, H., and RIEMENSCHNEIDER, O.: Verschwindungssätze fur analytische Kohomologiegruppen auf komplexen Raumen. Invent. Math.11, 263–292 (1970)
KOBAYASHI, S.: Negative vector bundles and complex Finsler structures. Nagoya Math. Jour.57, 153–166 (1975)
RABINOWITZ, J.H.: Moisezon spaces and positive coherent sheaves, Proc. Amer. Math. Soc.71, 237–240 (1978)
RABINOWITZ, J.H.: Positivity notions for coherent sheaves over compact complex spaces Invent. Math. to appear
RABINOWITZ, J.H.: Characterizing 2-dimensional Moishezon spaces by weakly positive coherent analytic sheaves to appear