Finitistic Extension Degree
Tóm tắt
We introduce the finitistic extension degree of a ring and investigate rings for which it is finite. The Auslander–Reiten Conjecture is proved for rings of finite finitistic extension degree and these rings are also shown to have finite finitistic dimension. We apply these results to better understand a generalized version of the Auslander–Reiten Condition for Gorenstein rings. We also record how the finitistic extension degree behaves with respect to many change of ring procedures that arise frequently in the commutative setting.
Tài liệu tham khảo
Auslander, M.: Selected Works of Maurice Auslander. Part 1. American Mathematical Society, Providence (1999). Edited and with a foreword by Idun Reiten, Sverre O. Smalø, and Øyvind Solberg
Auslander, M., Reiten, I.: On a generalized version of the Nakayama conjecture. Proc. Am. Math. Soc. 52, 69–74 (1975)
Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. 86(1), 111–152 (1991)
Auslander, M., Reiten, I., Smalø, S.O.: Representation theory of Artin algebras. In: Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge (1995)
Avramov, L.L., Buchweitz, R.-O.: Support varieties and cohomology over complete intersections. Invent. Math. 142(2), 285–318 (2000)
Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Am. Math. Soc. 95, 466–488 (1960)
Bergh, P.A.: Ext-symmetry over quantum complete intersections. Arch. Math. (Basel) 92(6), 566–573 (2009)
Bruns, W., Herzog, J.: Cohen–Macaulay rings. In: Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)
Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956)
Christensen, L.W., Holm, H.: Algebras that satisfy Auslander’s condition on vanishing of cohomology. Math. Z. 265(1), 21–40 (2010)
Christensen, L.W., Holm, H.: Vanishing of cohomology over Cohen–Macaulay rings. Manuscr. Math. 139(3–4), 535–544 (2012)
Diveris, K.: On modules with eventually vanishing self-extensions. Thesis, Syracuse University (2012)
Diveris, K., Purin, M.: The generalized Auslander–Reiten condition for the bounded derived category. Arch. Math. (Basel) 98(6), 507–511 (2012)
Happel, D.: Homological conjectures in representation theory of finite-dimensional algebras. In: Sherbrook Lecture Notes Series (1991)
Hoshino, M.: Modules without self-extensions and Nakayama’s conjecture. Arch. Math. (Basel) 43(6), 493–500 (1984)
Huneke, C., Jorgensen, D.A.: Symmetry in the vanishing of Ext over Gorenstein rings. Math. Scand. 93(2), 161–184 (2003)
Jorgensen, D.A., Şega, L.M.: Nonvanishing cohomology and classes of Gorenstein rings. Adv. Math. 188, 470–490 (2004)
Jorgensen, D.A., Şega, L.M.: Asymmetric complete resolutions and vanishing of Ext over Gorenstein rings. Int. Math. Res. Not. 56(56), 3459–3477 (2005)
Mori, I.: Symmetry in the vanishing of Ext over stably symmetric algebras. J. Algebra 310(2), 708–729 (2007)
Nasseh, S., Yoshino, Y.: On Ext-indices of ring extensions. J. Pure Appl. Algebra 213(7), 1216–1223 (2009)
Rotman, J.J.: An Introduction to Homological Algebra. Academic Press, New York (1979)
Schulz, R.: A nonprojective module without self-extensions. Arch. Math. (Basel) 62(6), 497–500 (1994)
Şega, L.M.: Self-tests for freeness over commutative Artinian rings. J. Pure Appl. Algebra 215(6), 1263–1269 (2011)
Weibel, C.A.: An introduction to homological algebra. In: Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)
Zaks, A.: Injective dimension of semi-primary rings. J. Algebra 13, 73–86 (1969)